
The Chain Rule

Example. Let f(x, y) = ex sin(xy). One can imagine this describes the temperature of the

plane at each point (x, y). Now imagine a bug moving in the plane with parametrization

C(t) = (t2, t3). Then the temperature the bug is feeling at time t is

f(C(t)) = et
2

sin
(
t5
)
.

Of course, we could compute the derivative of this directly, but there’s another way.

Chain Rule. Let f be differentiable on an open set U and let C(t) be a differentiable

curve contained in U . Then

d

dt
f ◦ C(t) = (grad f)(C(t)) · C ′(t).

(Proof? )

Suppose we’re in the two-variable case and C(t) = (x(t), y(t)). We could rewrite the

chain rule as
d

dt
f ◦ C(t) =

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

where the partial derivatives are of course evaluated at (x(t), y(t)).

Example. Let f(x, y, z) = x2yz and C(t) = (x(t), y(t), z(t)) = (et, t, t2). Then

(f ◦ C)′(t) = (D1f)x
′(t) + (D2f)y

′(t) + (D3f)z
′(t)

= 2xyzet + x2z + x2y(2t)

= 2e2tt3 + e2tt2 + 2e2tt2.

There are situations where we need only use the standard single variable chain rule.

Example. Let f(x, y, z) = sin
(
x2 − 3yz + xz

)
. Then

∂f

∂x
= cos

(
x2 − 3yz + xz

)
(2x+ z).

Tangent Plane

Let f(x, y, z) be a function on R3. Imagine that f models the temperature at each point of

the space and that we have a bug moving along a curve B(t) = (x(t), y(t), z(t)) in space.

Assume the bug started at a point with a comfortable temperature k and so decides to stick

to points with temperature k. That is, the bug is moving on the level surface

f(x, y, z) = k.

That is, we have for all t that

f(B(t)) = k.

Applying chain rule, we have

(grad f)(B(t)) ·B′(t) = 0.
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So the gradient of f is perpendicular to the path of the bug at every point.

In general, if we fix a point P on a level surface f(x, y, z) = k and look at all differentiable

curves passing through P at, say, t = 0, the above computation shows that all such curves

will be be perpendicular to grad f(P ) at t = 0 (see the following figure from Lang). Thus, in

a very real sense, grad f(P ) is perpendicular to the surface f(x, y, z) = k itself. This leads

to the following definition.

Definition. The tangent plane to f(X) = k at P is the plane through P , perpendic-

ular to grad f(P ).

Example. Find the tangent plane to x2 + y2 + z2 = 3 at the point (1, 1, 1).

Note that this a level surface of the function f(x, y, z) = x2 + y2 + z3 (corresponding to

f = 3). So our normal vector is N = (2x, 2y, 2z)|(1,1,1) = (2, 2, 2). The plane equation is

then

(2, 2, 2) · (x− 1, y − 1, z − 1) = 0,

or

x+ y + z = 3.

We can use the same techniques to find tangent lines to curves in R2.

Example. Find the tangent line to x2y + y3 = 10 at P = (1, 2).

We set f(x, y, ) = x2y+ y3. Then ∇(f)(P ) = (4, 13). Using the plane equation, our line

is described by

4x+ 13y = 30.

If a surface is described as the graph of z = g(x, y), we can still use the techniques above

by noting that the surface described by z = g(x, y) is a level surface of the three-variable

function w(x, y, z, ) = g(x, y)− z. In fact, one sees that the surface is precisely the level set

corresponding to w = 0. So a normal vector to the surface is given by

gradw =

(
∂g

∂x
,
∂g

∂y
,−1

)
.
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Directional Derivative

We aim to investigate the rate of change of a function. Specifically, we’re standing at some

point P in the domain of f and start walking in the direction of a vector A and want to

study the change in f .

Let P be a point and A a unit vector and look at the function

f(P + tA).

Chain rule gives us
d

dt
f(P + tA) = grad f(P + tA) ·A.

Evaluating at t = 0, the right hand side is grad f(P ) ·A. This leads to the definition of the

directional derivative.

Definition. The directional derivative of f at P in the direction of A is

DAf(P ) = grad f(P ) ·A.

We note that for a function z = f(x, y), this derivative can be interpreted geometrically

as the slope of a tangent to the curve formed by slicing the surface with the plane parallel

to the z-axis and the line P + tA.

Example. f(x, y) = x2 + y3, B = (1, 2). Find DBf(−1, 3).

Note that B is not a unit vector, so let’s put B̂ = 1√
5
(1, 2). So really we’re after

DB̂f(−1, 3). Plugging things in, have

DB̂f(−1, 3) = (2x, 3y2)

∣∣∣∣
(−1,3)

·
(

1√
5
(1, 2)

)
= 52/

√
5.

If P is a point and A is a unit vector, we have

DAf(P ) = grad f(P ) ·A = ∥grad f(P )∥ cos θ,

where θ is the angle between A and grad f(P ) and ∥A∥ doesn’t appear since it equals 1.

From this we get two interesting observations. One is that the gradient points in the

direction of steepest increase. The other is that in this direction, the rate of change is

grad f(P ). Similarly, − grad f(P ) points in the direction of steepest decrease.
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