

$U \subseteq \mathbb{R}^3$ open, $F: U \rightarrow \mathbb{R}^3$ a smooth vector field

$$F(x, y, z) = (f_1(x), f_2(x), f_3(x))$$

where $x = (x, y, z)$.

The divergence is

$$\operatorname{div} F = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}.$$

This is the natural extension of the div we saw previously.

Symbolically, one can write

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) = (D_1, D_2, D_3)$$

and say

$$\operatorname{div} F = \nabla \cdot F = D_1 f_1 + D_2 f_2 + D_3 f_3.$$

(scalar-valued)

The curl of F is (symbolically)

$$\operatorname{curl} F = \nabla \times F = \begin{vmatrix} E_1 & E_2 & E_3 \\ D_1 & D_2 & D_3 \\ f_1 & f_2 & f_3 \end{vmatrix}$$

(vector-valued)

Note:
(x, y, z)

$$= xE_1 + yE_2 + zE_3$$

$$= (D_2 f_3 - D_3 f_2, -D_1 f_3 + D_3 f_1, D_1 f_2 - D_2 f_1)$$

so $\operatorname{curl} F$ is another vector field.

$$\begin{aligned} E_1 &= (1, 0, 0) \\ E_2 &= (0, 1, 0) \\ E_3 &= (0, 0, 1) \end{aligned}$$

Ex: $F(x, y, z) = (\sin xy, e^{xz}, 2x + yz^4)$

$$(\operatorname{div} F)(x, y, z) = \underbrace{y \cos xy + 0 + 4yz^3}_{\text{scalar-valued fn}}$$

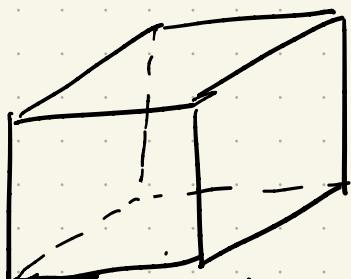
$$(\operatorname{curl} F)(x, y, z)$$

$$= \begin{vmatrix} E_1 & E_2 & E_3 \\ D_1 & D_2 & D_3 \\ \sin xy & e^{xz} & 2x + yz^4 \end{vmatrix}$$

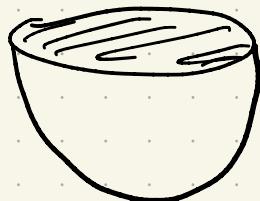
$$= \underbrace{\left(z^4 - \pi e^{xz}, -2, ze^{xz} - x \cos xy \right)}_{\text{vector field}}$$

Divergence Thm in \mathbb{R}^3

$U \subseteq \mathbb{R}^3$ a region whose boundary is a
closed surface
 (orientable)



closed



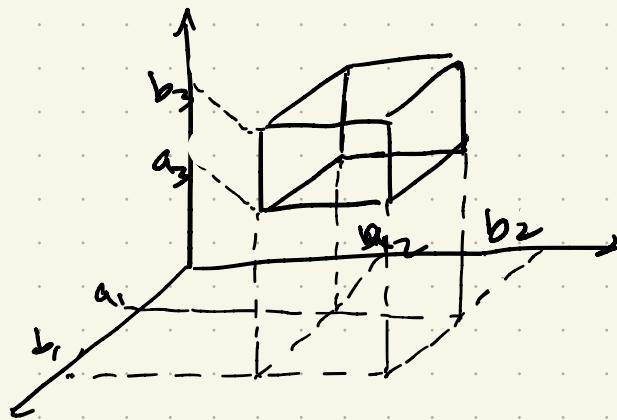
closed if
 you include
 top face

Divergence Theorem:

$u \subseteq \mathbb{R}^3$ region whose boundary is a smooth surface S . F defined on a neighborhood of u and S . \vec{n} outward normal.

$$\iint_S F \cdot \vec{n} d\sigma = \iiint_u \operatorname{div} F dV$$

Show this for a box:



$$[a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$$

The front face S , can be parametrized as

$$x_i(y, z) = (b_1, y, z)$$

$$\frac{\partial x_1}{\partial y} = (0, 1, 0), \quad \frac{\partial x_2}{\partial z} = (0, 0, 1) \quad a_2 \leq y \leq b_2$$

$$a_3 \leq z \leq b_3$$

$\vec{n}_i = (1, 0, 0) \rightarrow$ can compute this from the parametrization or just stare at the picture.

If $F = (f_1, f_2, f_3)$, then

$$\iint_S F \cdot \vec{n} d\sigma = \iiint_{a_3, a_2}^{b_3, b_2} f_1(z, y, z) dy dz$$

The back face S_2 can be parametrized

$$x(y, z) = (a_1, y, z), \quad \mathbf{n}_2 = -(1, 0, 0)$$

$$\iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iint_{a_3, a_2}^{b_3, b_2} -f_1(a_1, y, z) \, dy \, dz$$

$$\text{so } \iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, d\sigma + \iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iint_{a_3, a_2}^{b_3, b_2} (f_1(b_1, y, z) - f_1(a_1, y, z)) \, dy \, dz$$

$$= \iint_{a_3, a_2, a_1}^{b_3, b_2, b_1} D_1 f_1(x, y, z) \, dx \, dy \, dz$$

$$= \iiint_u D_1 f_1 \, dV.$$

Pairing off the other 4 sides will give

$$\iiint_u D_2 f_2 \, dV = \iint_{\substack{\text{side} \\ \text{faces}}} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$

$$\iiint_u D_3 f_3 \, dV = \iint_{\substack{\text{top} + \\ \text{bottom} \\ \text{faces}}} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$

Adding together gives

$$\iiint_u (D_1 f_1 + D_2 f_2 + D_3 f_3) dV = \iint_S \vec{F} \cdot \vec{n} d\sigma.$$

So the theorem holds for boxes.

Ex: $\vec{F}(x, y, z) = (x^2, y^2, z^2)$

$$S = \text{unit cube} = [0, 1] \times [0, 1] \times [0, 1]$$

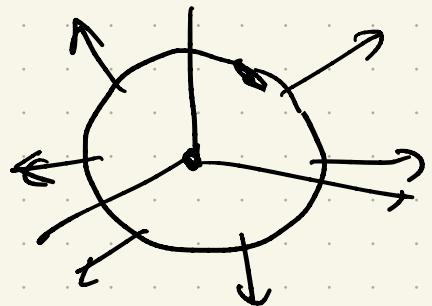
$$\iint_S \vec{F} \cdot \vec{n} d\sigma = \iiint_0^1 (2x + 2y + 2z) dx dy dz$$

$$= \dots = 3. \quad \text{The surface integral would require 6 separate integrals.}$$

Ex: $\vec{F}(x, y, z) = (x, y, z)$, $S = \text{sphere of radius } a$
 $B = \text{solid ball}$ centered at $(0, 0, 0)$.

$$\operatorname{div} \vec{F} = 1+1+1 = 3.$$

$$\begin{aligned} \iint_S \vec{F} \cdot \vec{n} d\sigma &= \iiint_B \operatorname{div} \vec{F} dV \\ &= 3 \iiint_B dV = 3 \operatorname{vol}(B) \\ &= 4\pi a^3. \end{aligned}$$



The surface integral is pretty easy to do directly.

$$F(x) = x.$$

$$F \cdot \vec{n} = x \cdot \frac{x}{\|x\|} = \frac{\|x\|^2}{\|x\|} = \|x\|.$$

Since x lies on sphere, $\|x\| = a$.

$$\iint_S F \cdot n \, d\sigma = \iint_S a \, d\sigma = a \iint_S d\sigma = a 4\pi a^2 = 4\pi a^3.$$

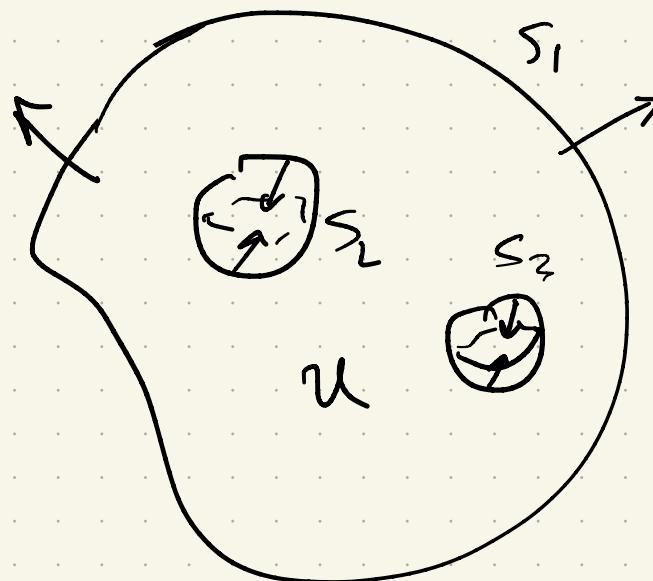
Corollary: Fix a pt. P . Let $B(t)$ be the solid ball of radius $t > 0$ centered at P . Let $S(t)$ be the boundary of $B(t)$ (i.e. the sphere of radius t). $V(t) := \text{vol } B(t)$.

$$(\text{div } F)(P) = \lim_{t \rightarrow 0} \frac{1}{V(t)} \iint_{S(t)} F \cdot n \, d\sigma$$

So again, $\text{div } F(P)$ measures net inflow flow in small regions around P .

Divergence Thm (general):

U open set whose boundary is composed of a finite number of surfaces $S = \{S_1, \dots, S_m\}$, where each S_i is oriented away from U.



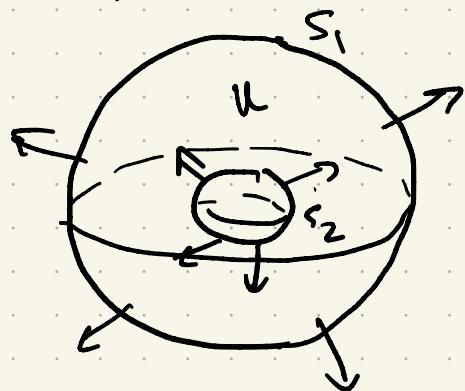
Then

$$\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iiint_U \operatorname{div} \mathbf{F} \, dV.$$

Ex - Suppose $\operatorname{div} \mathbf{F} = 0$ and let U be the region between two concentric spheres S_1 and S_2

$$\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, d\sigma - \iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, d\sigma = 0$$

since S_2 is oriented the opposite way you need for div. thm



$$\rightarrow \iint_{S_1} F \cdot d\sigma = \iint_{S_2} F \cdot d\sigma$$

This actually works for any two closed surfaces S_1, S_2 where S_2 is contained in the interior of S_1 .

Ex:- (Gauss' Law)

$$f(x, y, z) = \frac{q}{4\pi\rho} \quad \rho = \sqrt{x^2 + y^2 + z^2}$$

q constant

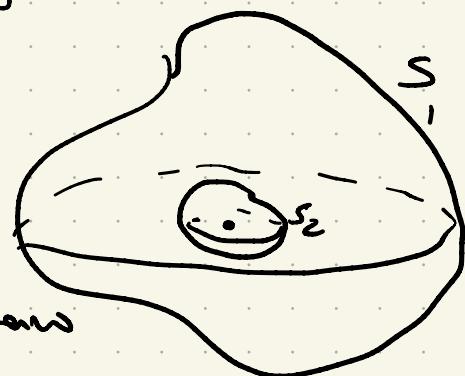
$$E = -\operatorname{grad} f = \frac{q}{4\pi\rho^3} X.$$

Check that $\operatorname{div} E = 0$.

The previous discussion shows that we can compute the electric flux through any closed surface by deforming it to a sphere.

$$\iint_{S_2} E \cdot d\sigma = \frac{q}{4\pi r^2} (4\pi r^2) = q$$

$$\frac{q}{4\pi\rho^3} X \cdot \frac{X}{\rho} = \frac{q}{4\pi\rho^3} \cdot \frac{\rho^2}{\rho} = \frac{q}{4\pi\rho^2} \quad \text{Gauss' Law}$$

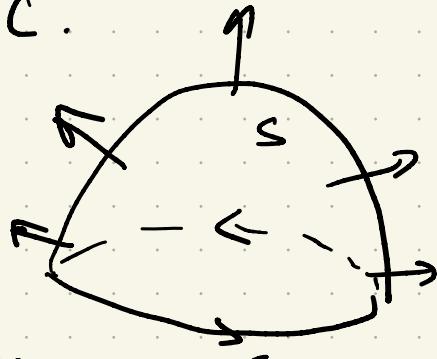


Stokes' Thm

Let S be a smooth surface in \mathbb{R}^3 , bounded by a closed curve C . Assume the surface is oriented and that C has the corresponding induced orientation. Let F be a vec. field.

Then

$$\iint_S (\operatorname{curl} F) \cdot \mathbf{n} \, d\sigma = \int_C F \cdot dC.$$



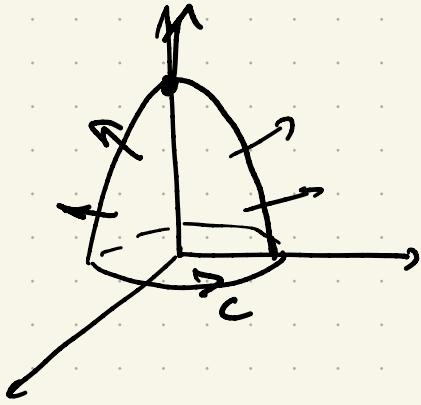
Pf idea: reduce it to Green's thm by a change of variables/transformation.

Note: Green's thm is actually a special case of Stokes', where S lies in the xy plane so that $\vec{n} = (0, 0, 1)$, which makes

$$(\operatorname{curl} F) \cdot \vec{n} = \operatorname{rot} F = D_1 f_2 - D_2 f_1,$$

$$\underline{\text{Ex:}} \quad F(x, y, z) = (2-y, x+z, -(x+y))$$

$$z = 4 - x^2 - y^2, \quad 0 \leq z \leq 4$$



$$c(t) = (2\cos t, 2\sin t, 0)$$

$$c'(t) = (-2\sin t, 2\cos t, 0) \quad 0 \leq t \leq 2\pi$$

$$F \cdot dC$$

$$= (0 - 2\sin t, 2\cos t, -2\cos t - 2\sin t)$$

$$\cdot (-2\sin t, 2\cos t, 0) dt$$

$$= (4\sin^2 t + 4\cos^2 t) dt = 4 dt$$

$$\int_0^{2\pi} F \cdot dC = \int_0^{2\pi} 4 dt = 8\pi.$$

$$\text{and } F = \begin{vmatrix} E_1 & E_2 & E_3 \\ D_1 & D_2 & D_3 \\ z-y & x+z & -x-y \end{vmatrix} = (-2, 2, 2)$$

$$x(x, y) = (x, y, 4 - x^2 - y^2), \quad x^2 + y^2 \leq 4$$

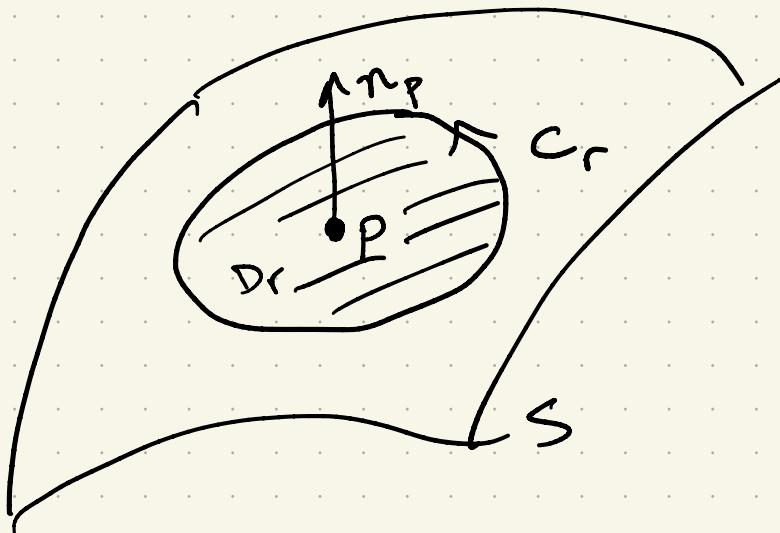
$$N(x, y) = \frac{\partial x}{\partial x} \times \frac{\partial y}{\partial y} = (2x, 2y, 1)$$

$$(\text{and } F) \cdot N = -4x + 4y + 2$$

$$\oint_S \iint \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d\sigma = \iint_{x^2+y^2 \leq 4} \operatorname{curl} \mathbf{F} \cdot \mathbf{N} dx dy$$

$$= \int_0^{2\pi} \int_0^2 (-4r \cos \theta + 4r \sin \theta + 2) r dr d\theta$$

$$= 8\pi.$$



Thm: $(\operatorname{curl} \mathbf{F}(P)) \cdot \vec{n}_P = \lim_{r \rightarrow 0} \frac{1}{A(r)} \int_{C_r} \mathbf{F} \cdot d\mathbf{C}$

PF: similar to 2-dim case.

So curl is a measure of rotation
or circulation of \mathbf{F} around P .

