
Curve Integrals

Recall (or accept) from physics that the work (which has the same units as energy) done

by a constant force F over a distance D is W = FD. This describes the case of the force

pointing in the direction of motion. A slightly more general equation is W = F ·D, where

F is the force vector and D is the displacement vector (imagine pushing a box). But this

equation still assumes a straight-line displacement and constant force in a fixed direction.

What if our trajectory is a curve C(t) and the force is a vector quantity F (X) that depends

on position?

If one zooms in close enough on a continuous vector field, it looks constant, and similarly

a curve will look like a straight line segment. The work done by the force on a small time

interval (t, t+∆t) can then be approximated as

F (C(t)) · (C(t+∆t)− C(t)).

We can rewrite this as

F (C(t)) · C(t+∆t)− C(t)

∆t
∆t.

If we add up these small bits of work and let ∆t → 0, we end up with an integral.

Thus we define the integral of F along C from time a to time b as∫
C

F =

∫ b

a

F (C(t)) · dC
dt

dt.

Example. F (x, y) = (x2y, y3). Find the integral along the straight line from (0, 0) to

(1, 1).

We take C(t) = (t, t), 0 ≤ t ≤ 1. C ′(t) = (1, 1). Then

F (C(t)) = (t3, t3).

Our integral is then ∫ 1

0

(t3, t3) · (1, 1)dt =
∫ 1

0

2t3dt = 1/2.

In 2-space, if we write F = (f, g), C(t) = (x(t), y(t)), then the curve integral can be

expressed ∫
C

F =

∫
C

fdx+ gdy.

Symbolically, the expression fdx+ gdy = (f, g) · (dx, dy). So one can write∫
C

F =

∫ b

a

[
f(x(t), y(t))

dx

dt
+ g(x(t), y(t))

dy

dt

]
dt.

Remark: The curve integral is independent of the particular parametrization you take.

That is, if C1(t) and C2(t) trace out the same curve but proceed at different rates, the

integral of F over either curve will be the same.

Example. Compute the integral of F (x, y) = (x2, xy) on the parabola x = y2 from

(1,−1) to (1, 1).

1



We can parametrize our curve as C(t) = (t2, t), −1 ≤ t ≤ 1. The integral is then∫
C

F · dC =

∫ 1

−1

f(C(t)) · C ′(t)dt =

∫ 1

−1

(t4, t3) · (2t+ 1)dt =

∫ 1

−1

(2t5 + t3)dt.

Example. Let

G(x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
.

Integrate G on the circle of radius 3 centered at the origin from (3, 0) to (3
√
3/2, 3/2).

We can parametrize the curve C as C(t) = (3 cos t, 3 sin t) where 0 ≤ t ≤ π/6, so that

C ′(t) = 3(− sin t, cos t). Now,

G(C(t)) =

(
−3 sin t

9
,
3 cos t

9

)
=

1

3
(− sin t, cos t).

So the curve integral is∫ π/6

0

G(C(t)) · C ′(t)dt =

∫ π/6

0

1

3
(− sin t, cos t) · [3(− sin t, cos t)]dt = π/6.

Notice that π/6 is also the change in angle of the parametrized particle over the course of

its journey. This is not a coincidence.

An Aside on Differential Forms

A function f(x, y, z) has gradient

grad f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

The total differential of f is

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

You can view this as a purely symbolic thing, perhaps a fancier way of writing the gradient.

However, there is something meaningful about this expression. If we think of dx, dy, dz

as small changes in x, y, and z, then this expression gives a way of approximating the

corresponding change in f . Remember that differentiability means that for H in some small

enough neighborhood of the origin, we can write

f(X +H)− f(X) = grad f(X) ·H + ∥H∥g(H)

where g(H) → 0 as H → 0. The left hand side is the change in f , say ∆f , going from X to

X +H. H itself is the change in input, which we could write H = (∆x,∆y,∆z), where we

imagine these are small changes in x, y, and z. Dropping the “error” term ∥H∥g(H), this

reads

∆f ≈ ∂f

∂x
∆x+

∂f

∂y
∆y +

∂f

∂z
∆z.
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Back to Curve Integrals

Given x = r cos θ and y = r sin θ, we can form their total differentials

dx = cos θdr − r sin θdθ, dy = sin θdr + r cos θdθ.

This is equivalent to

dx = cos θdr − ydθ, dy = sin θdr + xdθ.

We can rewrite this as

dx =
x√

x2 + y2
dr − ydθ, dy =

y√
x2 + y2

dr + xdθ.

In turn, we can say

−ydx =
−xy√
x2 + y2

dr − y2dθ, dy =
xy√

x2 + y2
dr + x2dθ.

Finally, adding these two equations together and solving for dθ yields,

dθ =
−y

x2 + y2
dx+

x

x2 + y2
dy.

This differential form is telling us that integral of the right hand side above will always give

the change in angle of the position vector over the course of traversing the curve.

A path C is a sequence of curves C1, . . . , Cm where each Ci is defined on an interval

[ai, bi] and if we write Pi = Ci(ai) and Qi = Ci(bi), then Pi+1 = Qi. In other words, one

curve ends where the next one starts. The integral along such a path C is defined as∫
C

F :=

∫
C1

F + · · ·+
∫
Cm

F.

A closed path is one such that Qm = P1 (we close the loop).

Example. Evaluate the integral of F = (x2, xy) along the closed path that goes along

y = x2 from (0, 0) to (1, 1), then along the line y = x from (1, 1) back to (0, 0).

We can parametrize this path as two curves C1 and C2. Where C1(t) = (t, t2), 0 ≤ t ≤ 1

and C2(t) = (1− t, 1− t), 0 ≤ t ≤ 1. The integral then becomes∫
C

F =

∫ 1

0

(t2, t3) · (1, 2t)dt+
∫ 1

0

((1− t)2, (1− t)2) · (−1,−1)dt = −1

3
+

2

5
.

The Reverse Path

For a curve C defined for a ≤ t ≤ b, the reverse curve C− is defined by

C− = C(a+ b− t), a ≤ t ≤ b.

Lemma. As one might expect, we have∫
C−

F = −
∫
C

F.

3



This comes from using u = a+ b− t, du = −dt.

Example. Integrate F (x, y) = (x2, xy) along y = x from (1, 1) to (0, 0). We can use

the lemma and instead integrate along the reverse curve and flip the sign of the result. So

let C(t) = (t, t), 0 ≤ t ≤ 1. Then what we’re after is

−
∫ 1

0

2t2dt = −2/3.

The reverse path of C1, . . . , Cm is C−
m, . . . , C−

1 .

Path Integrals and Potentials

Theorem. Let F be a vector field on an open set U and suppose F = gradφ for some φ

on U . Let C be a path from P to Q. Then∫
C

F = φ(Q)− φ(P ).

In particular, there is no dependence on the path itself, only on the endpoints.

Proof. Let g(t) = φ(C(t)). Then g′(t) = gradφ(C(t)) · C ′(t). Then we have∫
C

F =

∫ b

a

F (C(t)) · C ′(t)dt =

∫ b

a

gradφ(C(t)) · C ′(t)dt.

This last integral is the integral of g′(t) from a to b, so this becomes

∫
C

F =

∫ b

a

g′(t)dt = g(t)

∣∣∣∣b
a

= φ(C(b))− φ(C(b)) = φ(Q)− φ(P ).

Corollary. The integral around any closed loop of a conservative vector field is 0. This

is because such an integral will end up evaluating to φ(P )− φ(P ) = 0.

Notice this gives a test: if you can find a closed loop C with
∫
C
F ̸= 0, then F is certainly

not conservative.

Example. Let

F (x, y, z) = (2xy3z, 3x2y2z, x2y3).

Then

φ(x, y, z) = x2y3z

is a potential. Let P = (1,−1, 2) and Q = (−3, 2, 5). Then for any path from P to Q, we

have ∫ Q

P

F = φ(Q)− φ(P ) = 360− (−2) = 362.

When working with a conservative vector field, the notation
∫ Q

P
is fine since there’s no

dependence on the particular path.
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Example. Integrating

G(x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
around the unit circle yields a nonzero value, which shows G is not conservative. The

computation will be a homework problem.

Example. Let G(x, y) be as above. Compute the integral along the straight segment

path going from (0, 0) to (1, 1) to (0, 1).

Dependence of the Integral on the Path

Theorem. Let U be a connected open set and let F be a vector field on U . Assume that

for any two points P,Q ∈ U the integral ∫ Q

P,C

F

is independent of the path C in U joining P and Q. There there exists a potential function

for F on U .

Proof. Fix some point P0 ∈ U , then define

φ(X) =

∫ X

P0

F.

Write F = (f1, . . . , fn). We must investigate the quantity

φ(X + hEi)− φ(X)

h
=

1

h

[∫ X+hEi

P0

F −
∫ X

P0

F

]
.

We aim to show that this tends to fi as h → 0. By path independence, we can split the

first integral as
∫X

P0
+
∫ P0+hEi

X
, which gives us

φ(X + hEi)− φ(X)

h
=

1

h

[∫ X+hEi

X

F

]
.

We can compute this integral by taking the path

C(t) = X + thEi, 0 ≤ t ≤ 1.

C ′(t) = hEi, and F (C(t)) = F (X + thEi). Notice that F · Ei = fi. The path integral

becomes
φ(X + hEi)− φ(X)

h
=

1

h

∫ 1

0

fi(X + thEi)hdt.

If we change variables as u = th, du = hdt, we obtain

φ(X + hEi)− φ(X)

h
=

1

h

∫ h

0

fi(X + uEi)du.
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Letting h → 0, the fundamental theorem of calculus tells us the right side tends to fi(X).

Theorem. Let U be an open connected set, and let F be a vector field on U . If the

integral of F around every closed path in U is 0, then F has a potential.

Proof. Let P,Q be points in U , and let C and D be paths from P to Q in U . Then C

followed by D− is a closed loop, so that∫
C

F +

∫
D−

F = 0,

which implies ∫
C

F =

∫
D

F.

Now we apply the previous theorem.

We now have a pretty remarkable theorem.

Theorem. Let F be a vector field defined on the plane minus the origin. Write F =

(f, g). Assume D2f = D1g. Let C be the counterclockwise unit circle centered at the origin.

If
∫
C
F = 0, then F has a potential. Otherwise, writing

k =
1

2π

∫
C

F,

the field

F − kG

has a potential, where G is our special example.

Proof. First suppose
∫
C
F = 0. For X ̸= 0, define φ(X) to be the integral along the path in

the figure. That is, we get to X by first walking along the circle until we are standing at the

correct angle, and then proceed radially outward/inward to the point X. Our assumption

ensures that φ is well-defined. Similar techniques to the previous theorems will show that

gradφ = F .

In the second case, F − kG has 0 integral around C, so then the first case applies.
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