## Differentiation

Imagine a bug that moves with constant speed on a circular path of radius $r$ around the origin. The angle of the bug's position vector with the $+x$ axis can be written as

$$
\theta=\omega t+a .
$$

Assume $a=0$, so that the bug is on the $+x$ axis at time 0 . Then the position vector of the bug is

$$
X(t)=(r \cos (\omega t), r \sin (\omega t)) .
$$

Now imagine the bug lives in $\mathbb{R}^{3}$ with

$$
X(t)=(\cos (t), \sin (t), t)
$$

This lifts the circular path into a helix.
In general, a parametrized curve $X: I \rightarrow \mathbb{R}^{n}$ is a vector-valued function that maps points from an interval $I$ into $n$-space. In the examples above, $I$ is the entire real line $\mathbb{R}$ (which we consider to be an interval). We can write $X(t)$ as its individual coordinate functions

$$
X(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)
$$

Just as with ordinary real-valued function, we can take derivatives by looking at the limit

$$
\lim _{h \rightarrow 0} \frac{X(t+h)-X(t)}{h}
$$

Here, dividing by $h$ really means scaling the vector by $1 / h$. Writing out components, this is simply

$$
\lim _{h \rightarrow 0} \frac{\left(x_{1}(t+h)-x_{1}(t), \ldots, x_{n}(t+h)-x_{n}(t)\right)}{h}
$$

If the individual components are all differentiable, we obtain a new vector-valued function

$$
X^{\prime}(t)=\left(x_{1}^{\prime}(t), \ldots, x_{n}^{\prime}(t)\right)
$$

$X^{\prime}(t)$ is called the derivative or velocity of $X(t)$.
So for the example $X(t)=(\cos (t), \sin (t), t)$, we have

$$
X^{\prime}(t)=(-\sin (t), \cos (t), 1)
$$

The velocity is parallel to the direction of instantaneous motion.
Example. Find a parametric equation of the tangent line to the curve $X(t)=(\sin t, \cos t)$ at $t=\pi / 3$.

We need two pieces of information: a point on the line, and a direction vector of the line. These are supplied by $X(\pi / 3)$ and $X^{\prime}(\pi / 3)$ respectively. The tangent line $L(t)$ can
thus be written

$$
\begin{aligned}
\left.L(s)\right|_{t=\pi / 3} & =X(\pi / 3)+s X^{\prime}(\pi / 3) \\
& =\left(\frac{\sqrt{3}}{2}+\frac{1}{2} s, \frac{1}{2}-\frac{\sqrt{3}}{2} s\right) .
\end{aligned}
$$

We used the parameter $s$ for the line to avoid confusion with the already defined $X(t)$ above.
The speed of the curve $X(t)$, denoted $v(t)$, is defined to be

$$
v(t)=\left\|X^{\prime}(t)\right\|
$$

acceleration is the second derivative $X^{\prime \prime}(t)$.
We note also that differentiation is linear, meaning

$$
\frac{d}{d t}(X(t)+Y(t))=X^{\prime}(t)+Y^{\prime}(t)
$$

and

$$
\frac{d}{d t} c X(t)=c X^{\prime}(t)
$$

We also have a product rule:

$$
\frac{d}{d t} X(t) \cdot Y(t)=X^{\prime}(t) \cdot Y(t)+X(t) \cdot Y^{\prime}(t)
$$

This follows from applying the ordinary product rule. If $X(t)=\left(x_{1}(t), x_{2}(t)\right)$ and $Y(t)=$ $\left(y_{1}(t), y_{2}(t)\right)$, then

$$
\begin{aligned}
\frac{d}{d t} X(t) \cdot Y(t) & =\frac{d}{d t}\left(x_{1} y_{1}+x_{2} y_{2}\right) \\
& =x_{1}^{\prime} y_{1}+x_{1} y_{1}^{\prime}+x_{2}^{\prime} y_{2}+x_{2} y_{2}^{\prime} \\
& =x_{1}^{\prime} y_{1}+x_{2}^{\prime} y_{2}+x_{1} y_{1}^{\prime}+x_{2} y_{2}^{\prime} \\
& =X^{\prime}(t) \cdot Y(t)+X(t) \cdot Y^{\prime}(t)
\end{aligned}
$$

Of course, this same argument works in dimensions higher than 2.
Lang uses the notation $X(t)^{2}$ for $X(t) \cdot X(t)=\|X(t)\|^{2}$. Using this, the above formula has as a particular case

$$
\frac{d}{d t} X(t)^{2}=2 X(t) \cdot X^{\prime}(t)
$$

## Length of Curves

If we integrate the speed $v(t)$ of $X(t)$ from time $t=a$ to $t=b$, we obtain the distance or length traveled by $X(t)$ during the time interval $[a, b]$ :

$$
\text { length }=\int_{a}^{b} v(t) d t
$$

Example. Let $X(t)=(\cos (t), \sin (t))$ describe a particle. What distance does $X(t)$ traverse from $t=0$ to $t=1$ ?

We have $X^{\prime}(t)=(-\sin (t), \cos (t))$. Then $v(t)=\left\|X^{\prime}(t)\right\|=\sqrt{(-\sin (t))^{2}+\cos ^{2}(t)}=1$. So the distance $D$ is

$$
D=\int_{0}^{1} 1 d t=1
$$

Note that distance and displacement are not the same thing. In the example above, if we consider the distance traveled from $t=0$ to $t=2 \pi$, the particle travels a distance of $2 \pi$, but the net displacement is 0 since it ends up where it started.

Suppose $X(t)=\left(x_{1}(t), x_{2}(t)\right)$. Then the length integral can be written as

$$
\int_{a}^{b} \sqrt{\left(\frac{d x_{1}}{d t}\right)^{2}+\left(\frac{d x_{2}}{d t}\right)^{2}} d t
$$

This might seem familiar. In fact, consider now a real-valued function $f(x)$. We can parametrize the graph of $f$ from $x=a$ to $x=b$ as

$$
X(t)=(t, f(t)), a \leq t \leq b
$$

Slotting this into the integral above gives

$$
\int_{a}^{b} \sqrt{1+f^{\prime}(t)^{2}} d t
$$

which is the arclength formula you may have seen in Calc II.

