Differentiation

Imagine a bug that moves with constant speed on a circular path of radius r around the

origin. The angle of the bug’s position vector with the +z axis can be written as
0 = wt + a.

Assume a = 0, so that the bug is on the +x axis at time 0. Then the position vector of the
bug is
X (t) = (rcos(wt), rsin(wt)).

Now imagine the bug lives in R? with
X (t) = (cos(t),sin(t), t).

This lifts the circular path into a helix.

In general, a parametrized curve X : I — R" is a vector-valued function that maps
points from an interval I into m-space. In the examples above, I is the entire real line
R (which we consider to be an interval). We can write X () as its individual coordinate

functions
X(t) = (z1(t),...,zu(t)).

Just as with ordinary real-valued function, we can take derivatives by looking at the limit

1y X R) = X(0)
h—0 h

Here, dividing by h really means scaling the vector by 1/h. Writing out components, this

is simply

lim (z1(t+h) —x1(t), ..., zn(t + h) — 2 (t))
h—0 h '

If the individual components are all differentiable, we obtain a new vector-valued function

X'(t) = (21(8), .., 2, (1)).

X'(t) is called the derivative or velocity of X (¢).
So for the example X (t) = (cos(t),sin(¢),t), we have

X'(t) = (—sin(t), cos(t), 1).

The velocity is parallel to the direction of instantaneous motion.

Example. Find a parametric equation of the tangent line to the curve X (t) = (sin¢, cost)
at t =m/3.

We need two pieces of information: a point on the line, and a direction vector of the
line. These are supplied by X (7/3) and X’'(7w/3) respectively. The tangent line L(¢) can



thus be written

L(8)|t=r/3 = X(7/3) + sX'(m/3)
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We used the parameter s for the line to avoid confusion with the already defined X (t) above.
The speed of the curve X (t), denoted v(t), is defined to be

u(t) = X' (D).

acceleration is the second derivative X" (¢).

We note also that differentiation is linear, meaning
d / /
7 X @O +Y(0) =X +Y'(t)

and

We also have a product rule:

%X(t) YY) =X'(t)- Y () + X(¢) - Y'(¢).

This follows from applying the ordinary product rule. If X (t) = (z1(¢),z2(¢)) and Y (¢t) =
(y1(t), y2(t)), then

d
—X()-Y(t)= a(xﬂh + Z2y2)
= iy + 21Y) + Thye + T2yh

= 2y1 + xhys + T1Y] + T2y
=X'(t)-Y(t)+ X(t)-Y'(¢).

Of course, this same argument works in dimensions higher than 2.
Lang uses the notation X (¢)2 for X (t) - X (t) = || X (¢)||*. Using this, the above formula
has as a particular case
d

aX(t)Q =2X(t)- X'(¢).

Length of Curves

If we integrate the speed v(t) of X (¢) from time ¢ = a to t = b, we obtain the distance or
length traveled by X (¢) during the time interval [a, b]:

b
length:/ v(t)dt.

Example. Let X(t) = (cos(t),sin(t)) describe a particle. What distance does X (t)

traverse fromt =0tot =17



We have X'(t) = (—sin(t), cos(t)). Then v(t) = || X'(t)|| = /(—sin(t))2 + cos2(t) = 1.
So the distance D is )
D= / 1dt = 1.
0

Note that distance and displacement are not the same thing. In the example above, if
we consider the distance traveled from ¢t = 0 to t = 2, the particle travels a distance of 27,
but the net displacement is 0 since it ends up where it started.

Suppose X (t) = (21(t), z2(t)). Then the length integral can be written as

dl‘l dl‘g
L) ()

This might seem familiar. In fact, consider now a real-valued function f(z). We can

parametrize the graph of f from x = a to x = b as

X(t) = (t, f(t), a <t <b.

Slotting this into the integral above gives

/b NiES G

which is the arclength formula you may have seen in Calc II.



