
Differentiation

Imagine a bug that moves with constant speed on a circular path of radius r around the

origin. The angle of the bug’s position vector with the +x axis can be written as

θ = ωt+ a.

Assume a = 0, so that the bug is on the +x axis at time 0. Then the position vector of the

bug is

X(t) = (r cos(ωt), r sin(ωt)).

Now imagine the bug lives in R3 with

X(t) = (cos(t), sin(t), t).

This lifts the circular path into a helix.

In general, a parametrized curve X : I → Rn is a vector-valued function that maps

points from an interval I into n-space. In the examples above, I is the entire real line

R (which we consider to be an interval). We can write X(t) as its individual coordinate

functions

X(t) = (x1(t), . . . , xn(t)).

Just as with ordinary real-valued function, we can take derivatives by looking at the limit

lim
h→0

X(t+ h)−X(t)

h
.

Here, dividing by h really means scaling the vector by 1/h. Writing out components, this

is simply

lim
h→0

(x1(t+ h)− x1(t), . . . , xn(t+ h)− xn(t))

h
.

If the individual components are all differentiable, we obtain a new vector-valued function

X ′(t) = (x′
1(t), . . . , x

′
n(t)).

X ′(t) is called the derivative or velocity of X(t).

So for the example X(t) = (cos(t), sin(t), t), we have

X ′(t) = (− sin(t), cos(t), 1).

The velocity is parallel to the direction of instantaneous motion.

Example. Find a parametric equation of the tangent line to the curveX(t) = (sin t, cos t)

at t = π/3.

We need two pieces of information: a point on the line, and a direction vector of the

line. These are supplied by X(π/3) and X ′(π/3) respectively. The tangent line L(t) can
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thus be written

L(s)|t=π/3 = X(π/3) + sX ′(π/3)

=

(√
3

2
+

1

2
s,

1

2
−

√
3

2
s

)
.

We used the parameter s for the line to avoid confusion with the already defined X(t) above.

The speed of the curve X(t), denoted v(t), is defined to be

v(t) = ∥X ′(t)∥.

acceleration is the second derivative X ′′(t).

We note also that differentiation is linear, meaning

d

dt
(X(t) + Y (t)) = X ′(t) + Y ′(t)

and
d

dt
cX(t) = cX ′(t).

We also have a product rule:

d

dt
X(t) · Y (t) = X ′(t) · Y (t) +X(t) · Y ′(t).

This follows from applying the ordinary product rule. If X(t) = (x1(t), x2(t)) and Y (t) =

(y1(t), y2(t)), then

d

dt
X(t) · Y (t) =

d

dt
(x1y1 + x2y2)

= x′
1y1 + x1y

′
1 + x′

2y2 + x2y
′
2

= x′
1y1 + x′

2y2 + x1y
′
1 + x2y

′
2

= X ′(t) · Y (t) +X(t) · Y ′(t).

Of course, this same argument works in dimensions higher than 2.

Lang uses the notation X(t)2 for X(t) ·X(t) = ∥X(t)∥2. Using this, the above formula

has as a particular case
d

dt
X(t)2 = 2X(t) ·X ′(t).

Length of Curves

If we integrate the speed v(t) of X(t) from time t = a to t = b, we obtain the distance or

length traveled by X(t) during the time interval [a, b]:

length =

∫ b

a

v(t)dt.

Example. Let X(t) = (cos(t), sin(t)) describe a particle. What distance does X(t)

traverse from t = 0 to t = 1?
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We have X ′(t) = (− sin(t), cos(t)). Then v(t) = ∥X ′(t)∥ =
√

(− sin(t))2 + cos2(t) = 1.

So the distance D is

D =

∫ 1

0

1dt = 1.

Note that distance and displacement are not the same thing. In the example above, if

we consider the distance traveled from t = 0 to t = 2π, the particle travels a distance of 2π,

but the net displacement is 0 since it ends up where it started.

Suppose X(t) = (x1(t), x2(t)). Then the length integral can be written as

∫ b

a

√(
dx1

dt

)2

+

(
dx2

dt

)2

dt.

This might seem familiar. In fact, consider now a real-valued function f(x). We can

parametrize the graph of f from x = a to x = b as

X(t) = (t, f(t)), a ≤ t ≤ b.

Slotting this into the integral above gives∫ b

a

√
1 + f ′(t)2dt,

which is the arclength formula you may have seen in Calc II.

3


