
Calc I Integrals Revisited

Recall the construction of the (Riemann) integral of a function f defined on [a, b]. We take

a partition

a = x1 ≤ x2 ≤ · · · ≤ xm = b

of the interval. On each subinterval [xi, xi+1], we choose a value ti lying in that subinterval.

The corresponding Riemann sum is

m−1∑
i=1

f(ti)(xi+1 − xi).

The width of this partition P is defined to be the largest of the values xi+1−xi. A function

is then Riemann integrable if there is some value S such that∑
P

f(ti)(xi+1 − xi) → S

as width(P ) → 0. Notice that this must happen independently of the choice of the ti’s.

Closely related is the Darboux integral. For a given partition P , one defines

U(f, P ) =
∑
P

sup
[xi,xi+1]

f(t)(xi+1 − xi), L(f, P ) =
∑
P

inf
[xi,xi+1]

f(t)(xi+1 − xi).

If for ϵ > 0 there is some partition P so that U(f, P )−L(f, P ) < ϵ, f is said to be Darboux

integrable. It turns out that Riemann and Darboux integrability are equivalent.

An important feature of the Riemann integral is that it can deal with a finite number of

discontinuties, whether they’re jump discontinuties or removable, so long as f is bounded.

Boundedness, Supremum, Infimum

A function f defined on a region R is bounded if for some number M , |f(X)| < M for all

X ∈ R.
A set of real numbers A is bounded if it fits inside an interval (a, b). In this case, a is

a lower bound on the set, and b is an upper bound. But we can possibly do better. We

can slide b to the left, and as long as its still an upper bound, we can keep pushing it. At

some point, we’ll run into points of A and can’t go on. Thus we have the concept of a

supremum or least upper bound. Similarly, by sliding a to the right, we have the notion

of an infimum or greatest lower bound.

Double Integrals

The theory of integration is a bit more technical than the rest of what we’ve done so far, so

the proofs of several theorems are omitted from Lang. It’s nevertheless helpful to discuss a

few of the fundamental notions involved.

The set [a, b] × [c, d] consists of those points (x, y) such that a ≤ x ≤ b and c ≤ x ≤ d.

This is a rectangle in the plane.
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A partition of an interval [a, b] is a sequence of numbers

a = x1 ≤ x2 ≤ · · · ≤ xm = b.

This is sometimes denoted (x1, x2, . . . , xm).

If we partition [a, b] as (x1, . . . , xm) and [c, d] as (y1, . . . , yn), this subdivides the rectangle

R = [a, b]× [c, d] into smaller rectangles.

We denote by Sij the subrectangle [xi, xi+1]× [yj , yj+1].

Double integrals are defined very similarly as in the single variable case.

U(f, P ) =
∑
S

(sup
S

f)(Area(S)), L(f, P ) =
∑
S

(inf
S

f)(Area(S)).

The double integral has two nice interpretations, one as a volume, and the other as a

mass.

In the same way the Riemann integral on an interval can handle discontinuties as long

as they are not too abundant, so too can the Riemann integral on a region.

Theorem. Let R be a rectangle and let f be bounded on R and continous except at

possibly at points lying on a finite number of curves. Then f is integrable on R.

A lot of the familiar properties of integrals still work, like additivity and scaling.

Theorem. If A = A1 ∪A2 where A1 and A2 only overlap at possibly a finite number of

curves, then ∫∫
A

f =

∫∫
A1

f +

∫∫
A2

f.

Also, if A is some smooth curve contained in a rectangle R, and f is zero everywhere in R

except possibly at points in A, then ∫∫
R

f = 0.
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