Calc I Integrals Revisited

Recall the construction of the (Riemann) integral of a function f defined on [a, b]. We take
a partition
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of the interval. On each subinterval [x;, z;11], we choose a value ¢; lying in that subinterval.
The corresponding Riemann sum is
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The width of this partition P is defined to be the largest of the values x;11 —x;. A function
is then Riemann integrable if there is some value S such that
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as width(P) — 0. Notice that this must happen independently of the choice of the ¢;’s.
Closely related is the Darboux integral. For a given partition P, one defines

U(f,P)=> sup f(t)(wipr —x), L(f,P) = inf f(t)(wip1— ).
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If for € > 0 there is some partition P so that U(f, P) — L(f, P) < e, f is said to be Darboux
integrable. It turns out that Riemann and Darboux integrability are equivalent.
An important feature of the Riemann integral is that it can deal with a finite number of
discontinuties, whether they’re jump discontinuties or removable, so long as f is bounded.

Boundedness, Supremum, Infimum

A function f defined on a region R is bounded if for some number M, |f(X)| < M for all
X eR

A set of real numbers A is bounded if it fits inside an interval (a,b). In this case, a is
a lower bound on the set, and b is an upper bound. But we can possibly do better. We
can slide b to the left, and as long as its still an upper bound, we can keep pushing it. At
some point, we’ll run into points of A and can’t go on. Thus we have the concept of a
supremum or least upper bound. Similarly, by sliding a to the right, we have the notion
of an infimum or greatest lower bound.

Double Integrals

The theory of integration is a bit more technical than the rest of what we’ve done so far, so
the proofs of several theorems are omitted from Lang. It’s nevertheless helpful to discuss a
few of the fundamental notions involved.

The set [a,b] X [c,d] consists of those points (z,y) such that « < x < band ¢ <z < d.

This is a rectangle in the plane.



A partition of an interval [a, b] is a sequence of numbers
a=x1 <x9<---<x,, =b.

This is sometimes denoted (x1, 2, ..., Tm).
If we partition [a, ] as (z1, ..., %) and [¢,d] as (y1, . . ., Yn ), this subdivides the rectangle
R = [a,b] X [c,d] into smaller rectangles.
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Figure 2

We denote by S;; the subrectangle [x;, zit1] X [y;, yj+1)-
Double integrals are defined very similarly as in the single variable case.

U(f, P) = Z(Slé{p f)(Area(S)), L(f,P) = Z(igff)(Area(S))-

S S

The double integral has two nice interpretations, one as a volume, and the other as a
mass.

In the same way the Riemann integral on an interval can handle discontinuties as long
as they are not too abundant, so too can the Riemann integral on a region.

Theorem. Let R be a rectangle and let f be bounded on R and continous except at
possibly at points lying on a finite number of curves. Then f is integrable on R.

A lot of the familiar properties of integrals still work, like additivity and scaling.

Theorem. If A = A; UA; where A; and Ay only overlap at possibly a finite number of
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Also, if A is some smooth curve contained in a rectangle R, and f is zero everywhere in R
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curves, then

except possibly at points in A, then



