Repeated Integrals
f defined on $[a, b] \times[c, d]$.
Fix x, vary y to form the one variable integral

$$
\int_{c}^{d} f(x, y) d y
$$

As we move x, the value if the integral changes. Hence this is a function of x that we can integrate:

$$
\begin{aligned}
& \int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x, \text { also written } \\
& \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
\end{aligned}
$$

"repeated integral"

Ex 1: Li f $f(x, y)=x^{2} y$. Compute the repeated integral of f on $[1,2] \times[-3,4]$.

$$
\begin{aligned}
& \int_{1}^{2} \int_{-3}^{4} x^{2} y d y d x \\
&=\left.\int_{1}^{2} \frac{1}{2} x^{2} y^{2}\right|_{y=-3} ^{y=4} d x=\int_{1}^{2} \frac{1}{2}(16-9) x^{2} d x \\
&=\frac{7}{2} \int_{1}^{2} x^{2} d x=\left.\frac{7}{2} \frac{x^{3}}{3}\right|_{1} ^{2}=\frac{7}{2} \cdot \frac{1}{3}(8-1) \\
&=\frac{49}{6} .
\end{aligned}
$$

Theorem (Fubini): Let $R=[a, b] \times[c, d]$, and let f be integrable on R. Suppose $\int_{c}^{d} f(x, y) d y$ exists for each $x \in[a, b]$. Then

$$
\iint_{R} f=\int_{a}^{b} \int_{c}^{d} f d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y .
$$

Thus, we can say in the above example that

$$
\iint_{R} x^{2} y=\frac{49}{6} .
$$

$\int_{c}^{d} f(x, y) d y$ gives the area of a cross section

Varying x and integrating this area function wot x then gives a volume.

Suppose we have a region of the form

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: \begin{array}{l}
a \leq x \leq b \\
g_{1}(x) \leq y \leq g_{2}(x)
\end{array}\right\}
$$

Suppose f is cts on A. Define f to be 0 on $R \backslash A$.

Then for a fixed x, the integral $\int_{c}^{d} f(x, y) d y$ can be written

$$
\int_{c}^{d} f(x, y) d y=\int_{c}^{g_{1}(x)} f(x, y) d y+\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y+\int_{g_{2}(x)}^{d} f(x, y) d y
$$

(1) and (3) are 0 since f is O anfide the region A. So we have

$$
\int_{a}^{b}\left[\int_{g_{\cdot}(x)}^{g_{2}(x)} f(x, y) d y\right] d x
$$

This is very useful for computing double integrals.
Example: $f(x, y)=x^{2}+y^{2}$

$$
\begin{aligned}
A & =\left\{(x, y) \in \mathbb{R}^{2}: \begin{array}{l}
x^{2} \leq y \leq x \\
\text { and } 0 \leq x \leq 1
\end{array}\right\} \\
\iint_{A} f & =\int_{0}^{1}\left[\int_{0}^{x}\left(x^{2}+y^{2}\right) d y\right] d x \\
& \left.=\int_{0}^{1}\left(x^{2} y+y^{3} / 3\right)\right]_{y=x^{2}}^{y=x} d x \\
& =\int_{0}^{1}\left(x^{3}+\frac{x^{3}}{3}-x^{4}-\frac{x^{b}}{3}\right) d x
\end{aligned}
$$

$$
=\frac{1}{3} x^{4}-\frac{x^{5}}{5}-\left.\frac{x^{7}}{21}\right|_{0} ^{1}=\frac{1}{3}-\frac{1}{5}-\frac{1}{21}
$$

If we have a region $A=A_{1} \cup A_{2}$ where A_{1}, A_{2} only overlap on the boundary, then $\iint_{A} f=\iint_{A_{1}} f+\iint_{A_{2}}$, which gives us a way to apply the above ideas to more complicated regions.
$E_{x}=f(x, y)=2 x y$.
$A=$ region bounded by $y=0, y=x, x+y=2$.

$$
\begin{aligned}
\iint_{A_{1}} f & =\int_{0}^{1} \int_{0}^{x} 2 x y d y d x \\
& =\left.\int_{0}^{1} x y^{2}\right|_{y=0} ^{y=x} d x \\
& =\int_{0}^{1} x^{3} d x=\frac{1}{4}
\end{aligned}
$$

$$
\begin{gathered}
\iint_{A_{2}} f=\int_{1}^{2} \int_{0}^{2-x} 2 x y d y d x \\
=\left.\int_{1}^{2} x y^{2}\right|_{y=0} ^{y=2-x} d x=\int_{1}^{2} x(2-x)^{2} d x=5 / 12 .
\end{gathered}
$$

So $\iint_{A} f=\frac{1}{4}+\frac{5}{12}$.
We can also evaluate this integral in the dxdy order.

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: \begin{array}{c}
y \leqslant x \leqslant 2-y \\
0 \leqslant y \leqslant 1
\end{array}\right\}
$$

$$
\text { so } \iint_{A} f=\int_{0}^{12-y} \int_{y} 2 x y d x d y
$$

Note that Area $(A)=\iint_{A} 1 d y d x=\iint_{A} d x d y$.
Ex: Fond the area of the region between $y=x$ and $y=x^{2}$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{1} \int_{x^{2}}^{x} d y d x=\int_{0}^{1}\left(x-x^{2}\right) d x \\
& =\frac{x^{2}}{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

Ex: Find the integral of $f(x, y)=x^{2} y^{2}$ over the regin bounded by $y=1, y=2, x=0, x=y$

$$
\int_{1}^{2} \int_{0}^{y} x^{2} y^{2} d x d y=\frac{7}{2}
$$

Ex- sketch the region

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: \begin{array}{l}
0 \leq y \leq|x|, \\
-2 \leq x \leq 1
\end{array}\right\}
$$

Ex:- $A=\left\{(x, y) \in \mathbb{R}^{2}: \begin{array}{l}|y| \geqslant|x| \\ \text { and }-2 \leq x \leq 0\end{array}\right\}$

since $x \leq 0$ on A, $|x|=-x$, so

$$
\begin{aligned}
& |y| \geqslant|x| \Longleftrightarrow|y| \geqslant-x \\
& \Leftrightarrow x \geqslant-|y|
\end{aligned}
$$

Polar Coordinates

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta \\
\Downarrow \\
r=\sqrt{x^{2}+y^{2}}
\end{gathered}
$$

Ex: Find the polar cords of $(1, \sqrt{3})$.

$$
\begin{aligned}
& r=\sqrt{1+3}=2 \\
& \left\{\begin{array} { l }
{ 1 = 2 \operatorname { c o s } \theta } \\
{ \sqrt { 3 } = 2 \operatorname { s i n } \theta }
\end{array} \Rightarrow \left\{\begin{array}{l}
\cos \theta=\frac{1}{2} \\
\sin \theta=\frac{\sqrt{3}}{2}
\end{array}\right.\right. \\
& \Rightarrow \theta=\frac{\pi}{3}, \text { so }(r, \theta)=\left(2, \frac{\pi}{3}\right)
\end{aligned}
$$

Note: $(r, \theta)=(r, \theta+2 \pi k)$ for any k.
Ex: In polar coordinates, the disk of radius 3 centered at the origin is

$$
\begin{gathered}
0 \leq \theta \leq 2 \pi \\
0 \leq r \leq 3
\end{gathered}
$$

So in the (r, θ) plane, the region is a rectangle.

Ex: graph $r=\sin \theta$ for $\theta \in[0, \pi]$.

$$
\begin{aligned}
r & =\sin \theta \Rightarrow r^{2}=r \sin \theta \Rightarrow x^{2}+y^{2}=y \\
& \Rightarrow x^{2}+y^{2}-y=0 \Rightarrow x^{2}+\left(y-\frac{1}{2}\right)^{2}-\frac{1}{4}=0 \\
& \Rightarrow x^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4} .
\end{aligned}
$$

Consider partitions

$$
\begin{aligned}
& a=\theta_{1} \leq \theta_{2} \leq \ldots \leq \theta_{n}=b \\
& c=r_{1} \leq r_{2} \leq \ldots \leq r_{m}=d
\end{aligned}
$$

each pair $\left[\theta_{i}, \theta_{i+1}\right],\left[r_{j}, r_{j+1}\right]$ determines a sectorial piece.

The area of a sector/wedge with angle 0 and radius r is

$$
\frac{\theta}{2 \pi} \pi r^{2}=\frac{\theta r^{2}}{2}
$$

$$
\text { so } \begin{aligned}
\operatorname{Area}\left(s_{i j}\right) & =\frac{\left(\theta_{i+1}-\theta_{i}\right) r_{j+1}^{2}}{2}-\frac{\left(\theta_{i+1}-\theta_{i}\right) r_{j}^{2}}{2} \\
& =\left(\theta_{i+1}-\theta_{i}\right) \frac{r_{j+1}+r_{j}}{2}\left(r_{j+1}-r_{j}\right)
\end{aligned}
$$

writing $\frac{r_{j+1}+r_{j}}{2}=\bar{r}_{j}$, we have

$$
\text { Area }\left(S_{i j}\right)=\overline{r_{j}}\left(r_{j+1}-r_{j}\right)\left(\theta_{i+1}-\theta_{i}\right)
$$

If f is a function on the $x-y$ plane, the corresponding function of (r, θ) is

$$
f^{*}(r, \theta)=f(r \cos \theta, r \sin \theta) \text {. }
$$

En:

$$
\begin{aligned}
f(x, y)=2 x^{2} y \Rightarrow f^{f}(r, \theta) & =2 r^{2} \cos ^{2} \theta r \sin \theta \\
& =2 r^{3} \cos ^{2} \theta \sin \theta
\end{aligned}
$$

So for a sector $S: a \leq \theta \leq b, c \leq r \leq d$ in the plane, we can form the Riemann sum

$$
\sum_{j=1}^{m-1} \sum_{i=1}^{n-1} f^{*}\left(\bar{r}_{i}, \theta_{i}\right) \bar{r}_{j}\left(r_{j+1}-r_{j}\right)\left(\theta_{i+1}-\theta_{i}\right)
$$

If we let S^{*} be the corresponding recfande in the $\theta-r$ plane, it is now reasonable to cain

$$
\begin{array}{r}
\iint_{S} f(x, y) d y d x=\iint_{S^{*}} f^{*}(r, \theta) r d r d \theta \\
\qquad d y d x=r d r d \theta
\end{array}
$$

