Repeated Integrals f defined on [a,b]×[c,d] Fix x, vary y to form the one variable integral d $\int_{c} f(x,y) dy$ As we more x, the value of the integral changes. Hence this is a function of x that we can integrate: also written $\int \left[\int f(x,y) dy \right] dx$ [f(x,y)dydx "repeated integral"

Ex 1: Let $f(x,y) = x^2y$. Compute the repeated integral of f on $E1,2] \times [-3,4]$. $\int \int \pi^2 y \, dy \, dx$ $= \int \frac{1}{2} x^{2} y^{2} \Big|_{y=-3}^{y=-3} dx = \int \frac{1}{2} (16-9) x^{2} dx$ $\frac{7}{2}\int x^2 dx = \frac{7}{2}\frac{x^3}{3}\Big|_{1}^{2} = \frac{7}{2}\cdot\frac{1}{3}(8-1)$ $=\frac{41}{6}$. Theorem (Fubini): Let R = [a,b] × [c,d], and let f be integrable on R. Suppose Scf(r,y) dy exists for each x ∈ [a,b]. Then $\int f = \int f \lambda_y dx = \int f(x,y) dx dy$ can say in the above example that Thus, we $\iint x^2 y = \frac{49}{6}.$

Sf(x, y) dy gives the are of a cross section Varying x and integrating this area function wrt x then gives a volume. Suppose we have a region of the form λ + β_{1} β_{2} β_{2} β_{3} β_{4} β_{5} β_{1} β_{5} β_{1} β_{5} β_{5} $A = \begin{cases} (x,y) \in \mathbb{R}^2 : a \leq x \leq b \\ and \\ g_1(x) \leq y \leq g_2(x) \end{cases}$ - Suppose f is cts on A. Define f to be O on R\A Then for a fixed x, the integral S_f(x,y)dy can be written

g,(x) 92(x) $\int_{C} f(x,y) dy = \int_{C} f(x,y) dy + \int_{C} f(x,$ 1) ad 2) are 0 since f is the region A. So we have orticle $\int_{a}^{b} \left[\int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy \right] dx$ This is very useful for computing abouble integrals. $j = \pi^2$ Example: $f(x,y) = \pi^2 + y^2$ A= Z(n,y) EIR²: and D=x=1 J $\iint_{A} F = \int_{D} \left[\int_{\pi^{2}}^{\pi} (x^{2} + y^{2}) dy \right] dx$ $= \int_{0}^{1} (x^{2}y + \frac{y^{3}}{3}) \Big|_{y=x^{2}}^{y=x}$ dx $\int_{0} \left(x^{3} + \frac{\pi^{3}}{3} - x^{4} - \frac{x^{b}}{3} \right) dx$

 $\frac{1}{3}x^{4} - \frac{x^{5}}{5} - \frac{x^{7}}{21} \bigg|_{0}^{1} = \frac{1}{3} - \frac{1}{5} - \frac{1}{21}$ If we have a region $A = A, \cup A_2$ where A, Az only overlap on the boundary, then SSF=SSF+SS, which gives us a way to apply the above ideas to more complicated regions. En: f(xy)=2xy A = region bounded by y=0, y=x, x+y=2 y=x SF= SSZxydydx A, ob $= \int_{0}^{1} xy^{2} \Big|_{y=0}^{y=x} dx$ AI AI $= \int x^3 dx = \frac{1}{4}$ SF=SS2xydydx A2 $= \int \pi y^{2} \Big|_{y=0}^{y=2-\chi} d\pi = \int \pi (2-\pi)^{2} dx = \frac{5}{12}$

 $S_{0} = \int_{12}^{12} f = \frac{1}{4} + \frac{5}{12}$ We can also evaluate this negral in the drady order. $A = \begin{cases} (x, y) \in \mathbb{R}^2 & y \in x \leq 2 - y \end{cases}$ so $SSF = \int S 2\pi y d\pi dy$. A o y Note that Area (A) = {{1 dydx = }} dxdy. Ex: Fond the area of the region between y=x and y=x² Area = $\int_{0}^{\infty} \int_{\pi^2} dy dx = \int_{0}^{\infty} (\pi - \pi^2) dx$ = $\pi^2 - \pi^3 \int_{0}^{1} \int_{0}^{\infty} dy dx$ $=\frac{\pi^2}{2}-\frac{\pi^3}{3}\bigg|_{0}^{1}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}.$ Et: Find the integral of $f(xy) = x^2y^2$ over the region bounded by y=1, y=2, $\pi=0$, $\pi=3$ $\int_{1}^{A} \frac{2^{8}}{3} \int_{1}^{2} \frac{1}{3} \frac{1}{3} \frac{7}{2} \frac{7}{2} \frac{1}{3} \frac{7}{3} \frac{7}{3} \frac{1}{3} \frac{7}{3} \frac{1}{3} \frac{7}{3} \frac{1}{3} \frac{1}$

Ex: Sketch the region $b \leq y \leq |x|, \zeta$ $-2 \leq x \leq 1$ $A = \{(x,y) \in \mathbb{R}^2 :$ Mico lyl≥lxl and ~2≤x≤0 $A = \{(x,y) \in \mathbb{R}^2$ since $x \leq 0$ on A, |x| = -x, so141≥1×1 => 141≥-x ⇐> x ≥ - |y|

Polar Coordinates $(r, \theta) or (x, y) \chi = r \cos \theta$ y= rsino 10 X $\int = \sqrt{\pi^2 + \gamma^2}$ Ex: Find the polar coords of (1, 5) $f = \sqrt{1+3} = 2$ $\implies \Theta = \frac{\pi}{3} , \quad (\circ \quad (r, \Theta) = \left(2, \frac{\pi}{3}\right).$ Note: $(r, \theta) = (r, \theta + 2\pi k)$ for any k. Ex: In polar coordinates, the disk of radius 3 centered at the origin is $0 \leq \theta \leq 2\pi$ $o \leq r \leq 3$

transformation x = rcosQ y=rsind A* So in the (r, D) plane, the region is a rectangle. = sind for OE [0, TT] Ex: graph $r=\sin\theta \implies r^2 = r\sin\theta \implies \pi^2 + y^2 = 4$ $\implies \chi^{2} + y^{2} - y = 0 \implies \chi^{2} + (y - \frac{1}{2})^{2} - \frac{1}{4} = 0$ $= 7 \chi^{2} + (\gamma^{-1} 2)^{2} = \frac{1}{4}$

Consider Partitions $a=0, \leq 0_2 \leq \ldots \leq 0_n = b$ $C = r_1 \leq r_2 \leq \ldots \leq r_m = d$ each pair [Oi, Oi+1], [ri, ri+1] determines a sectorial piece. The area of a sector/wedge with angle O and radius r is $\frac{\Theta}{2\pi}\pi r^2 = \frac{\Theta r^2}{2}$ 50 Area $(s_{ij}) = \frac{(\vartheta_{i+1} - \vartheta_i) l_{j+1}^2}{2} - \frac{(\vartheta_{i+1} - \vartheta_i) r_j^2}{2}$ $(\Theta_{i+1} - \Theta_i) \frac{\Gamma_{i+1} + \Gamma_{i}}{2} (\Gamma_{i+1} - \Gamma_{i})$

writing $\frac{\Gamma_{\delta+1} + \Gamma_{\delta}}{2} = \overline{\Gamma_{\delta}}$ we have Area $(S_{ij}) = \overline{r_i} (r_{ij} - r_i) (\Theta_{ij} - \Theta_i).$ If f is a function on the x-y plane, the corresponding function of (r, θ) is $f^{*}(r, \theta) = f(rcos\theta, ssin\theta)$. $E_{\mathbf{X}}: f(\mathbf{x}, \mathbf{y}) = 2\mathbf{x}^2 \mathbf{y} \Longrightarrow f^{\mathbf{x}}(\mathbf{r}, \mathbf{0}) = 2\mathbf{r}^2 \cos^2 \mathbf{0} \mathbf{r} \sin \mathbf{0}$ $= 2r^3 \cos^2 \theta \sin \theta$ So for a sector S: asosb, csred m the plane, we can form the Riemann sum $\sum_{i=1}^{n-1} f^*(\overline{r_i}, \overline{\sigma_i}) \overline{r_i} (r_{i+1} - r_i) (\overline{\sigma_{i+1}} - \overline{\sigma_i})$ If we let st be the corresponding rectangle in the O-r plane, it is now reasonable to claim Sf(x,y)dydx = Sff*(r,o)rdrdo (dydx = rdrdo)

							٠	٠	٠	0	٠	•	٠		٠			•			٠		٠	٠		٠	•	•								
		•			•					•						•		•						•			•					•			•	
	٠	۰	٠	٠	۰	٠	٠	۰	٠	٠	٠	٠	٠	٠	•	٠	٠		٠	٠	•	٠	•	•	٠	•	•	٠	٠	٠	٠	٠	•	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	٠	٠	•	٠	٠	٠	٠	•	٠	•	•	•	٠		٠	٠				•	٠			•	•		•	٠	٠	•	٠				٠
•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	•	٠	٠		•	•	•	٠			٠	•		٠	٠	٠	٠	٠				٠
	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	•	٠	•		•	•	•	•		•	٠	•		•	•	•	•	٠		•		•
•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	•	٠	٠	•	•	•	*	٠		•	٠	٠	•	٠	•	٠	•	٠	•	•	•	٠
•	•	•	•	•		•	•	•	•	•	•		•	•		0	•	•			•	•	•		•	•	•	•		•	•	0		•	•	•
			٠	٠			•			•																										
									٠									٠																	٠	
٠		•	٠	٠	•	٠	٠		•	•				٠		•	•	•			٠				•	•	•					0			•	
٠		•	•	•	٠	•	•	•	٠	•	•		•	•		٠	•	٠	•		•	•	•	•	•	•	٠			•	•	٠	•	•	٠	
•	•		٠	•		٠	•		•		•	•	•	٠	•	٠	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•		•	•	٠	•
	•	•	•		•	•	•		•	•				•			•	•			•		•					•			•			•	•	
																										•						•				
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠		•	•	•	٠			٠	•		٠	٠	٠	٠	٠		•		٠
•		•	•	٠	•	·	•	•	•	•	•	•	•	•		٠	•		•	•	•	•		•	•	•	•	•	•	•	•	٠		•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•			•				•	•		•	•		•	•			•	•
																		•																		
		•	•	•	•	•	•	•	•	•	•		•	•		•	•		•		•	•			•	•	•			•		•			•	•
									٠																											
•									•																											
		٠	•	•	٠	•				•	•			•		٠									•							٠				
	٠	0	٠	٠	0	٠	٠	٠	•	0	•	•	•	٠		0	٠			•	٠	٠			٠	•		٠	•	•	٠	0				٠
٠		•	•		•				•	•	•		•	•		•		٠	•		•			•	•	•	•					•	•		٠	
									٠																											
•	•								•																											
		•			•				•	•	•					٠		•			•					•	•					•				
		•	•	•	٠	•			٠	•	•			•		٠		٠					•		•		٠					٠		•	٠	
		•		•	•	•			٠	•	•			•				•			•		•	•	•	•	•					•		•	٠	
•									•																											
•									•																											
									•	•	•															•										
	•	٠	٠	٠	٠	٠	٠		•	٠	•	•	•	٠		٠	٠	•	•	•		•	•	•	•	•	•	•	•	•	•	٠				•