

Vector Space

The model example of a vector space is \mathbb{R}^n .

- Def: A vector space over \mathbb{R} is a set V with an addition (+) operation and scaling operation s.t.
 - $u+v = v+u$ for all $u, v \in V$
 - $(u+v)+w = u+(v+w)$ and $(a+b)v = a(v+b) = av+bv$ for all $u, v, w \in V$ $a, b \in \mathbb{R}$.
 - There exists $0 \in V$ s.t. $v+0 = v$ for all $v \in V$.
 - $\forall v \in V$, there is $w \in V$ s.t. $v+w = 0$.
 - $1v = v$ $\forall v \in V$.
 - $a(u+v) = au+av$ $a, b \in \mathbb{R}$
 $(a+b)v = av+bv$ $u, v \in V$.

addition:
 $u, v \in V$
 $u+v \in V$
scaling:
 $\lambda \in \mathbb{R}$
 $v \in V$
 $\lambda v \in V$

Elements of V are called vectors or points.

Can replace \mathbb{R} w/ \mathbb{C} (or any field)

We immediately see \mathbb{R}^n is a vector space over \mathbb{R} .

If S is a set, then \mathbb{R}^S denotes the set of functions from S to \mathbb{R} . This a v.s. over \mathbb{R} .

A vector space has a unique additive identity.

Pf.: If $0, 0'$ are additive identities, then

$$0 = 0' + 0 = 0 + 0' = 0'.$$

Every element has a unique additive inverse

Pf.: Suppose w, w' are additive inverses of v . Then $w = w + 0 = w + (v + w')$
 $= (w + v) + w' = 0 + w' = w'$.

we denote the additive inverse of v by $-v$.

$w - v$ is defined as $w + (-v)$.

$$0v = 0$$

$$\text{Pf. } 0v = (0 + 0)v = 0v + 0v$$

$$\Rightarrow 0v = 0v + 0v$$

$$\Rightarrow 0v = 0.$$

$$\begin{aligned} w + w &= w \\ \Rightarrow w &= 0 \end{aligned}$$

$a\mathbf{0} = \mathbf{0}$ for any $a \in \mathbb{R}$.

Pf: $a\mathbf{0} = a(\mathbf{0} + \mathbf{0}) = a\mathbf{0} + a\mathbf{0} \Rightarrow a\mathbf{0} = \mathbf{0}$.

$(-1)\mathbf{v} = -\mathbf{v}$ $\forall \mathbf{v} \in V$.

Pf: $\mathbf{v} + (-1)\mathbf{v} = \mathbf{v} + (-1)\mathbf{v} = (1 + (-1))\mathbf{v} = 0\mathbf{v} = \mathbf{0}$.

so $(-1)\mathbf{v}$ is the additive inverse of \mathbf{v} .

Def: A subset $U \subseteq V$ is a subspace of V if it is also a vector space with the same addition and scaling operations and the same additive identity.

Prop: A subset U is a subspace of V if and only if

$$\text{1) } \mathbf{0} \in U$$

$$\text{2) } u, w \in U \Rightarrow u + w \in U.$$

$$\text{3) } a \in \mathbb{R} \text{ and } u \in U \Rightarrow au \in U.$$

Pf: Certainly a subspace will satisfy these conditions. Now suppose a subset $U \subseteq V$ satisfies the above conditions. Associativity, commutativity, additive identity, multiplicative ident, distributive properties are all automatically satisfied.

For any $u \in U$, $(-1)u \in U$ by (3). But $(-1)u = -u$, so additive inverse property holds. Condition (2) ensures addition is well-defined. Similarly (3) ensures scalar mult. is well-defined. \square

Span and Linear Independence

Def: A linear combination of a list v_1, \dots, v_m of vectors in V is a vector of the form

$$a_1v_1 + \dots + a_mv_m$$

where each $a_i \in \mathbb{R}$.

Ex: Let $V = \mathbb{R}^3$, $v_1 = (2, 1, -3)$, $v_2 = (1, -2, 4)$.

$(17, -4, 2) = 6v_1 + 5v_2$, so
 $(17, -4, 2)$ is a linear combination of v_1 and v_2 .

$(17, -4, 5)$ is not. Why?

$$\begin{cases} 17 = 2a_1 + a_2 \\ -4 = a_1 - 2a_2 \\ 5 = -3a_1 + 4a_2 \end{cases} \text{ has no solutions.}$$

The set of all linear combinations of v_1, \dots, v_m is called the span of v_1, \dots, v_m :

$$\text{span}(v_1, \dots, v_m) = \{a_1v_1 + \dots + a_mv_m : a_1, \dots, a_m \in \mathbb{R}\}$$

Ex: in previous example

$$(17, -4, 2) \in \text{span}(v_1, v_2)$$

$$(17, -4, 5) \notin \text{span}(v_1, v_2)$$

Prop: The span of a list of vectors v in V is the smallest subspace containing all vectors in the list.

("smallest" means that any other subspace containing v_1, \dots, v_m must also contain $\text{span}(v_1, \dots, v_m)$)

Pf.: $0 \in \text{span}(v_1, \dots, v_m)$. Why?

$\text{span}(v_1, \dots, v_m)$ is closed under addition. Why?

Also closed under scalar multiplication. Why?

Thus the span is a subspace.

Any other subspace containing v_1, \dots, v_m must also contain $\text{span}(v_1, \dots, v_m)$ (why?),

so $\text{span}(v_1, \dots, v_m)$ is indeed the smallest subspace containing each v_1, \dots, v_m . \square

Def: v_1, \dots, v_m spans V if

$$V = \text{span}(v_1, \dots, v_m).$$

Q: what is a spanning set/list for \mathbb{R}^4 ?

Def. A vector space is finite dimensional if it is the span of a (finite) list of vectors.

Linear independence: $v_1, \dots, v_m \in V$. $v \in \text{span}(V)$.

By definition, there exist $a_1, \dots, a_m \in \mathbb{R}$ s.t.

$$v = a_1 v_1 + \dots + a_m v_m.$$

One natural question is whether this choice is unique. If $c_1, \dots, c_m \in \mathbb{R}$ are scalars that also satisfy

$$v = c_1 v_1 + \dots + c_m v_m, \text{ then}$$

$$0 = (a_1 - c_1)v_1 + \dots + (a_m - c_m)v_m. \quad (1)$$

This exhibits 0 as a lin. comb. of v_1, \dots, v_m . Certainly,

$$0 = 0v_1 + \dots + 0v_m.$$

If this is the only way to write 0, then eqn (1) implies $a_1 = c_1, a_2 = c_2, \dots, a_m = c_m$, meaning there is a unique way to write v .

Def. A list v_1, \dots, v_m in V is called linearly independent if $a_1 v_1 + \dots + a_m v_m = 0$ implies $a_1 = a_2 = \dots = a_m = 0$.

(i.e. $a_1 = \dots = a_m = 0$ is the only way to make $a_1 v_1 + \dots + a_m v_m = 0$)

Ex: $(1, 0, 0), (0, 1, 0), (0, 0, 1)$ are linearly indp. why?

Def: v_1, \dots, v_m are linearly dependent if they are not linearly independent.

Ex: $(2, 3, 1), (1, -1, 2), (7, 3, 8)$ are linearly dependent

since

$$2 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + (-1) \begin{pmatrix} 7 \\ 3 \\ 8 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Lemma: Suppose v_1, \dots, v_m is a linearly dependent list in V . Then for some $k \in \{1, 2, \dots, m\}$,

$$v_k \in \text{span}(v_1, \dots, v_{k-1}).$$

moreover, if v_k is removed from the list, the span of the remaining list equals $\text{span}(v_1, \dots, v_m)$

PF: We have some a_1, \dots, a_m not all zero s.t.

$$a_1 v_1 + \dots + a_m v_m = 0.$$

k be the largest index s.t. $a_k \neq 0$. Then

$$v_k = \frac{-a_1}{a_k} v_1 - \dots - \frac{-a_{k-1}}{a_k} v_{k-1}, \quad (1)$$

so $v_k \in \text{span}(v_1, \dots, v_{k-1})$.

Thus if $v = c_1 v_1 + \dots + c_m v_m$, we can replace v_k with RHS of (1), so that removing v_k from v_1, \dots, v_m doesn't change the span. \square

For technical reasons, we declare the span of an empty list to be $\{\emptyset\}$. This is to handle the case where $R=1$ in the above lemma.

Proposition: In a f.d.v.s, the length of every lin. indp list is \leq the length of every spanning list.

Pf.: Let u_1, \dots, u_m be linearly indp. Let w_1, \dots, w_n be a spanning list. (goal: $m \leq n$).

The idea is to swap out w 's for u 's one at a time, and to show that we can do this as long as we still have u 's left, allowing us to conclude there are at least as many w 's as there are u 's.

Step 1: Let $B = \{w_1, \dots, w_n\}$.

Since u_1 can be written as a linear combination of the w 's by assumption,

u_1, w_1, \dots, w_n is linearly dependent. $u_1 \neq 0$ by linear independence, which ensures we can remove one of the w 's without changing the span. So we've removed a w and added a u .

Now insert u_2 after u_1 in this new list:

$u_1, u_2, \text{remaining } w$'s.

Once again, this list is lin. dependent, and one of the vectors is a lin. combination of the ones before it.

It can't be u_2 or u_1 , so it must be one of the w 's.

Discard this vector ...

□

Ex: no list of length 4 is lin. indp in \mathbb{R}^3 .
 E_1, E_2, E_3 is a spanning list. Thus any lin
indp list must have length ≤ 3 .

Ex: No list of length 3^{or less} spans \mathbb{R}^4 .

E_1, E_2, E_3, E_4 is lin indp, so any spanning
list needs at least 4 vectors.

Prop: Every subspace of a f.d.v.s. is f.d.

Pf: see Axler, ideas are similar. \square

Bases

Def: A basis of V is a linearly indp set
that spans V .

Ex: $e_1 = (1, 0, \dots, 0)$

$e_2 = (0, 1, \dots, 0)$ is a basis for \mathbb{R}^n .

\vdots

$e_n = (0, 0, \dots, 1)$

b) $(1, 2), (3, 5)$ is a basis for \mathbb{R}^2 .

c) $(1, 2, -4), (7, -5, 6)$ is linearly indp. in \mathbb{R}^3 , but not
a basis. Why?

a) $(1,2), (3,5), (4,13)$. Spans \mathbb{R}^2 , not a basis.

c) The list $(1,1,0), (0,0,1)$ is a basis for $\{(x,x,y) : x,y \in \mathbb{R}\}$.

why is this a vector space?
at least two ways to see this

f) $(1,-1,0), (1,0,-1)$ is a basis of

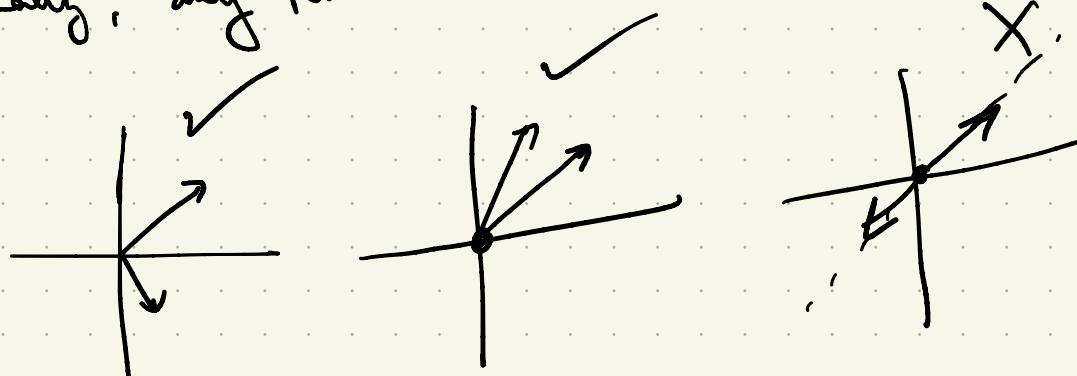
$$\{(x,y,z) \in \mathbb{R}^3 : x+y+z=0\}$$

g) $1, x, x^2, \dots, x^m$ is a basis of $\mathbb{P}^m(\mathbb{R})$.

Ex: In \mathbb{R}^2 , there are many possible bases

$$(7,5), (-4,9) \text{ or } (1,2), (3,5).$$

Really, any two vectors that are not collinear.



Prop: A list v_1, \dots, v_n of vectors in V is a basis of V if and only if every $v \in V$ has exactly one representation of the form

$$v = a_1 v_1 + \dots + a_n v_n, \quad a_i \in \mathbb{R}.$$

Pf: suppose v_1, \dots, v_n is a basis. Let $v \in V$.

Then for some $a_i \in \mathbb{R}$

$$v = a_1 v_1 + \dots + a_n v_n.$$

If we also have

$$v = c_1 v_1 + \dots + c_n v_n,$$

$$0 = (a_1 - c_1) v_1 + \dots + (a_n - c_n) v_n$$

$\Rightarrow a_i = c_i \ \forall i$ since v_1, \dots, v_n lin indp.

So every vector has exactly one representation as a lin comb. of v_1, \dots, v_n .

Now suppose every $v \in V$ has a unique rep.

wrt v_1, \dots, v_n . Then v_1, \dots, v_n of course

spans V . Also,

$$0 = 0 v_1 + \dots + 0 v_n,$$

and by assumption, this is the only rep.

Hence v_1, \dots, v_n are lin indp, so we have

a basis. \square

Ex: In \mathbb{R}^2 , $(1, 2), (3, 6), (4, 7), (5, 9)$ is a spanning list, but not a basis. If we remove vectors 2 and 4, though, we obtain a basis.

Prop: Every spanning list can be reduced to a basis.

Pf: "mark and sweep"

Start with spanning list v_1, \dots, v_n .

Step 1: If $v_1 = 0$, mark it for removal.

Step k: If $v_k \in \text{span}(v_1, \dots, v_{k-1})$, mark v_k for deletion.

$v_1 \quad v_2 \quad v_3 \quad v_4 \quad \dots \quad v_{n-1} \quad v_n$

now delete the marked vectors.

The resulting list still spans V .

Also, no vector is in the span of the previous ones,
so the list is lin. indp. \square

Cor: Every f.d.v.s has a basis.

Prop: Every linearly independent set in a f.d.v.s can be extended to a basis.

Proof: Let u_1, \dots, u_m be lin. indp.

By assumption, V has some spanning list

w_1, \dots, w_n . Apply the reduction process to

$u_1, \dots, u_m, w_1, \dots, w_n$.

No u_i 's will be deleted since no u_i is in the span of the ones before it. \square

Ex: \mathbb{R}^3 $(2, 3, 4), (9, 6, 8)$

$(1, 0, 0), (0, 1, 0), (0, 0, 1)$

$(2, 3, 4), (9, 6, 8), (1, 0, 0), (0, 1, 0), (0, 0, 1)$

Sums of subspaces

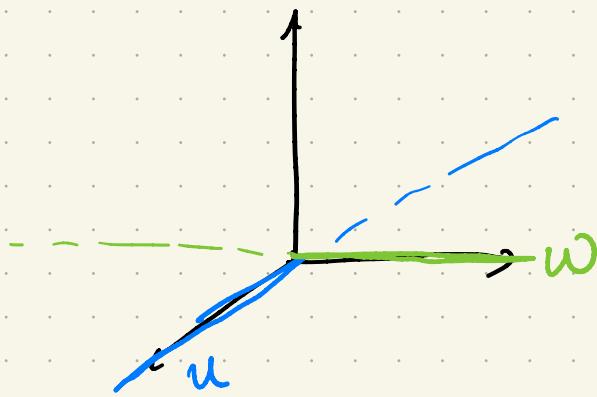
Let V_1, \dots, V_m be subspaces of V . The sum of V_1, \dots, V_m is

$$V_1 + \dots + V_m = \{v_1 + \dots + v_m : v_1 \in V_1, \dots, v_m \in V_m\}$$

Ex: \mathbb{R}^3

$$U = \{(x, 0, 0) : x \in \mathbb{R}\}, \quad W = \{(0, y, 0) : y \in \mathbb{R}\}$$

Then $U + W = \{(x, y, 0) : x, y \in \mathbb{R}\}$



Prop. V_1, \dots, V_m subspaces of V .

$V_1 + \dots + V_m$ is the smallest subspace containing each of V_1, \dots, V_m .

Def: $V_1 + \dots + V_m$ is a direct sum if each $v \in V_1 + \dots + V_m$ can be written in only one way as $v = v_1 + \dots + v_m$, $v_k \in V_k$.

In this case, we write

$$V_1 \oplus \dots \oplus V_m.$$

$$\underline{\text{Ex:}} \quad U = \{(x, y, 0) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}$$

$$W = \{(0, 0, z) \in \mathbb{R}^3 : z \in \mathbb{R}\}$$

$$\text{Then } \mathbb{R}^3 = U \oplus W.$$

$$\underline{\text{Pf:}} \quad \text{Certainly } \mathbb{R}^3 = U + W.$$

$$\text{Now if } u_1 + w_1 = u_2 + w_2$$

$$(x_1, y_1, z_1) = (x_2, y_2, z_2)$$

$$\Rightarrow x_1 = x_2, y_1 = y_2, z_1 = z_2$$

$$\Rightarrow u_1 = u_2 \text{ and } w_1 = w_2. \square$$

$$\boxed{\begin{aligned} u_1, u_2 &\in U \\ w_1, w_2 &\in W. \\ u_1 &= (x_1, y_1, 0) \\ u_2 &= (x_2, y_2, 0) \\ w_1 &= (0, 0, z_1) \\ w_2 &= (0, 0, z_2) \end{aligned}}$$

Ex: a sum that is not direct

$$V_1 = \{(x, y, 0) : x, y \in \mathbb{R}\}$$

$$V_2 = \{(0, 0, z) : z \in \mathbb{R}\}$$

$$V_3 = \{(0, y, y) : y \in \mathbb{R}\}$$

$$\text{Again, } \mathbb{R}^3 = V_1 + V_2 + V_3,$$

$$\text{but } (0, 0, 0) = (0, 1, 0) + (0, 0, 1) + (0, -1, -1)$$

$$(0, 0, 0) = (0, 0, 0) + (0, 0, 0) + (0, 0, 0).$$

Prop. $V = v_1 \oplus \dots \oplus v_m$ if and only if
the only way to write 0 is by taking
0 for each v_k in

$$0 = v_1 + v_2 + \dots + v_m.$$

Pf. ... \square

Prop. U, W subspaces of V . Then

$$U + W \text{ direct} \iff U \cap W = \{0\}.$$

Pf. (\Rightarrow) $v \in U \cap W$. $0 = v + (-v) \in U + W$.

But $U \oplus W$, so $v = -v = 0$. So $U \cap W = \{0\}$.

(\Leftarrow) Suppose $U \cap W = \{0\}$.

$$0 = u + w, \begin{matrix} u \in U \\ w \in W \end{matrix}.$$

$$-u = w \Rightarrow w \in U.$$

\uparrow
 U

So $w \in U \cap W = \{0\}$. So $w = 0$,

and in turn $u = 0$. \square

Prop. $V = \text{fdvs}$, U subspace. Then there is a subspace W of V s.t

$$V = U \oplus W.$$

Idea: extend basis u_1, \dots, u_m of U to basis $u_1, \dots, u_m, w_1, \dots, w_n$ of V .
Set $W = \text{span}(w_1, \dots, w_n)$. \square

Dimension

Prop: Any two bases of a fdvs have the same length.

Pf: Let B_1 and B_2 be bases.

$$\text{length}(B_1) \leq \text{length}(B_2)$$

length
indp.
list spanning
list

$$\text{length}(B_2) \leq \text{length}(B_1)$$

length
indp.
list spanning
list \square

Ex: $\dim \mathbb{R}^n = n$.

$\dim P_m(\mathbb{R}) = m+1$.

Prop: if U is a subspace of $V = \text{fdvs}$, then
 $\dim U \leq \dim V$.

Pf: ... \square

Prop: $V = \text{fdvs}$. Every lin indp list of
length $\dim V$ is a basis of V .

Pf: $\dim V = n$. Let v_1, \dots, v_n be lin indp.

v_1, \dots, v_n can be extended to a basis. But
any basis has length n , so that the extension
is to add nothing. So v_1, \dots, v_n is a basis. \square

Prop: $V = \text{fdvs}$, U subspace. If $\dim U = \dim V$,
then $U = V$.

Pf: Let $n = \dim U = \dim V$. Let u_1, \dots, u_n
be a basis for U . From prev. prop.,
 u_1, \dots, u_n is also a basis for V , so it
spans V , meaning $U = V$.

Ex. $(5, 7), (4, 3) \in \mathbb{R}^2$. This is a lin. indp list since neither is a scalar mult. of the other. $\dim \mathbb{R}^2 = 2$, so we know this list is a basis. We do not need to bother checking the span is \mathbb{R}^2 .

Ex. Let $V = P_3(\mathbb{R})$.

$$U = \left\{ p \in P_3(\mathbb{R}) : p'(5) = 0 \right\}.$$

Find a basis for U .

Note $1, (x-5)^2$, and $(x-5)^3$ lie in U .

Suppose $a + b(x-5)^2 + c(x-5)^3 = 0 \quad \forall x \in \mathbb{R}$.

We see cx^3 is the cubic term on RHS.

$$\Rightarrow c = 0.$$

This in turn implies the x^2 term is bx^2 .

$$\Rightarrow b = 0.$$

$$\Rightarrow a = 0.$$

So $\dim U \geq 3$.

side note:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Why?

$$\text{So } 3 \leq \dim U \leq \dim P_3(\mathbb{R}) = 4.$$

$x \notin U$. So U is not all of $P_3(\mathbb{R})$, meaning $\dim U \neq 4$. $\Rightarrow \dim U = 3$.

Conclude $1, (x-5)^2, (x-5)^3$ is a basis of U .

$$p = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

$$p'(x) = a_1 + 2a_2 x + 3a_3 x^2$$

$$p'(5) = a_1 + 10a_2 + 75a_3 = 0$$

$$\begin{aligned} a_0 + (-10a_2 - 75a_3)x + a_2 x^2 + a_3 x^3 \\ = a_0 + a_2(-10x + x^2) + a_3(-75x + x^3) \end{aligned}$$

Prop. $V = \text{fdvs}$. If a spanning list has length $\dim V$, then it is a basis of V .

Proof:

A spanning list can be reduced to a basis. But the remaining list must have length $\dim V$. \square

Bsp: $\dim(V_1 + V_2) = \dim V_1 + \dim V_2$
 $\quad \quad \quad - \dim(V_1 \cap V_2).$