Green's Theorem

$$
\begin{aligned}
& F(x, y)=(p(x, y), q(x, y)) \quad\left(\begin{array}{c}
\text { assume } \\
\text { smooth functions) }
\end{array}\right. \\
& \int_{C} F=\int_{a}^{b} F(c(t)) \cdot C^{\prime}(t) d t=\int_{c} p(x, y) d x+q(x, y) d y
\end{aligned}
$$

abbr as $\int_{c} F=\int_{c} p d x+q d y$
reasonable notation since $F(c(t)) \cdot c^{\prime}(t) d t$

$$
=p \frac{d x}{d t}+q \frac{d y}{d t} .
$$

Thu 1.1. (Green's Theorem) Let $(p, q$) be a vector field on A. Le A be the interior of a closed path C oriented $C \subset W$. Then

$$
\int_{c} p d x+q d y=\iint_{A}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) d y d x
$$

Proving it in full generality is difficult, but we can show it for certain types of regions.

Suppose A is a rectangular region $[a, b] \times[c, d]$.
(1)

$$
\begin{aligned}
& \iint_{A} \frac{\partial p}{\partial y} d y d x=\int_{a}^{b} \int_{c}^{d} \frac{\partial}{\partial y} p(x, y) d y d x c_{3} \psi c_{c_{4}}^{c_{2}} \\
& =\int_{a}^{b} p(x, y) c_{y=c}^{y=d} d x=\int_{a}^{b}(p(x, d)-p(x, c)) d x \\
& =-\int_{c_{2}} p d x-\int_{c_{4}} p d x
\end{aligned} \quad c=\left(c_{1}, c_{2}, c_{3}, c_{4}\right)
$$

on rentical segments, $d x=0 \Rightarrow \int_{c_{1}} p d x=0$
so $\quad \iint_{A} \frac{\partial p}{\partial y} d y d x=\int_{C} p d x \quad \int_{C_{3}} p d x=0$
(2)

$$
\begin{aligned}
& \iint_{A} \frac{\partial q}{\partial x} d x d y=\int_{c}^{d} \int_{a}^{b} \frac{\partial q}{\partial x} d x d y=\int_{c}^{d}[q(b, y)-q(a, y)] d y \\
& =\int_{C_{1}} q d y+\int_{c_{3}} q d y=\int_{c} q d y
\end{aligned}
$$

$(1)+\iint_{A}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) d y d r=\int_{c} p d x+g d y$
We can then approximate regions by rectangles.

notice that on two adjacent rectangles, cancellations occur, and youive left with
 the boundary.

Ex 1: $F(x, y)=(y+3 x, 2 y-x)$

$$
\begin{gathered}
C: 4 x^{2}+y^{2}=4 \\
\frac{\partial p}{\partial y}=1, \frac{\partial q}{\partial x}=-1 \\
\int_{C} p d x+q d y=\iint_{A}-2 d y d x=-2 \cdot \operatorname{Area}(A) \\
=-2 \cdot \pi \cdot 1 \cdot 2=-4 \pi
\end{gathered}
$$

Ex 2: $F=\left(3 x y, x^{2}\right)$

$$
\begin{aligned}
& \int p d x+q d y \\
& \int_{c} p d x+q d y=\iint_{R}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) d y d x \\
& =\int_{-1}^{3} \int_{-1}^{2}(2 x-3 x) d y d x=\int_{-1}^{3} \int_{0}^{2}-x d \gamma_{0} d_{x} \\
& =\int_{-1}^{3}-2 x d x=-\left.x^{2}\right|_{1} ^{3}=-9+1=-8 .
\end{aligned}
$$

This is much beffer than parametrizing the boundary.

Green's Thu, general version: Let A be a region in the plane whose boundary consists of a frise \# of curves, each one minted st. A lies to the lift.

Then

$$
\int_{c} p d x+q d y=\iint_{A}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) d y d x
$$

Ex: Let A be the region between two concentric circles with CCW orientation.

Applying Greenis theorem here would require us to reverse C_{2}, s the integral in Green's formula wold be

$$
\begin{aligned}
& \int_{c_{1}} p d x+q d y+\int_{c_{2}} p d x+q d y=\iint_{A}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) d d x \\
& \int_{c_{1}} p d x+q d y-\int_{c_{2}} p d x+q d y
\end{aligned}
$$

If $\frac{\partial p}{\partial y}=\frac{\partial q}{\partial x}$, then we lave

$$
\int_{c_{1}} p d x+q d y=\int_{c_{2}} p d x+q d y
$$

If F is conservative, we always have $D_{2} p=D_{1} q$. But we can have $D_{2} p=D_{1} q$ for a nonconservative vector field.

Ex: $G=\left(\frac{-y}{x^{2}+y^{2}}, \frac{\pi}{x^{2}+y^{2}}\right)$

Note: Green's The doesrit immediately apply since the interior of C curtains a pt. for which G is undefined.

Introduce C_{1}, a circle centered at O.

Then $\int_{\gamma} G=\underbrace{\int_{1} G}_{\text {we know }}$ this guy.

$$
=2 \pi
$$

Note: If γ does not enclose the origh, then

$$
\int_{\gamma} G=0 . \text { why? }
$$

2) Divergence and Rotation

$$
F=(p, q) \text { vector feed } p, q: u \leq \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

The divergence of F is

$$
\operatorname{div} F=D_{1} p+D_{2} q=\frac{\partial p}{\partial x}+\frac{\partial q}{\partial y}
$$

The rotation of F is

$$
\operatorname{rot} F=D_{1} q-D_{2} p=\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y} .
$$

Note float rot F is exactly the quantity appearing in Green's theorem.

It may help in the following discussion to imagine that F is describing a fluid flow in a region.

Green's Theorem states

$$
\iint_{A} \text { rot } F \text { states } d y d x=\int_{a}^{b} F(c(t)) \cdot c^{\prime}(t) d t
$$

where A is the regich inside C oriented $C C W$.

Now, $\quad\left\|C^{\prime}(t)\right\|=\frac{d s}{d t}$, the speed.
Here $s(t)$ is the distance traveled.
Let \vec{u} be a unit vector in the tangential direction of c at time t.

$$
c^{\prime}(t)=\vec{u}(t) \frac{d s}{d t}
$$

Then

$$
\iint_{A} \operatorname{rot} F d g d x=\int_{C} F \cdot \vec{u} d s \quad((t) \Delta \vec{u}(t) \text { the more aligned }
$$

F is with the velocity, the move this integral is picking up.

Thin 2.1 Let D_{r} be the disk of radius r at a point P. Let C_{r} be the boundary of D_{r}. Let F be a vector field defined on the closed disk. Let $A(r)=\pi r^{2}$.

Then

$$
(\operatorname{rot} F)(P)=\lim _{r \rightarrow 0} \frac{1}{A(r)} \int_{C_{r}} F \cdot \bar{u}
$$

Proof: Fix $x=(x, y)$ in the disk.

$$
\operatorname{rot} F(x)=\operatorname{rot} F(p)+\ln (x)
$$

where $\lim _{x \rightarrow P} h(x)=0$ (this can be dore by continuity).

$$
\begin{aligned}
\frac{1}{A(r)} \int_{C_{r}} F \cdot \vec{u} d s & =\frac{1}{A(r)} \iint_{D_{r}} r o t F d y d x \\
& =\frac{1}{A(r)} \iint_{D_{r}} \underbrace{r+F(P)}_{\text {constant }} d y d x+\frac{1}{A(r)} \iint_{D_{r}} h(x, y) d y d x \\
& =\operatorname{rot} F(P)+\frac{1}{A(r)} \iint_{D_{r}} h(x, y) d y d x
\end{aligned}
$$

$$
\begin{aligned}
& \left|\frac{1}{A(r)} \iint_{D_{r}} h(x, y) d y d x\right| \leq \frac{1}{A(r)} \iint_{D_{r}}|h(x, y)| d y d x \\
& \quad \leq \frac{1}{A(r)} \iint_{D_{r}} \max _{D_{r}}|h(x, y)| d y d x \\
& \quad=\max _{D_{r}}|h(x, y)| \frac{1}{A(r)} \iint_{D_{r}} d y d x=\max _{D_{r}}|h(x, y)|
\end{aligned}
$$

$F \cdot \vec{u}$ is the component of F in the tangential direction.

This rot $F(P)$ gives a quantitative measure of how munch the vector field circulates around a given point.

$$
\begin{gathered}
C(t)=(x(t), y(t)) a \leq t \leq b \\
\left(\frac{d x}{d t}, \frac{d y}{d t}\right)=c^{\prime}(t) \\
\square\left(\frac{d t}{d t},-\frac{d x}{d t}\right)=N
\end{gathered}
$$

\rightarrow right normal vector.

Ex: $C(\theta)=(\cos \theta, \sin \theta)$
$N(\theta)=(\cos \theta, \sin \theta)$ The position
 vector for a parametrized circle is always normal to the circle itself.

We can now loose at $F(C(t)) \cdot N(t)$ rather than $F(C(t)) \cdot C^{\prime}(t)$

Thu: $A=$ region, interior f a closed $C C W$ curve C. F vector field on A. Then

$$
\iint_{A}(\operatorname{div} F) d y d x=\int_{C} F(C(t)) \cdot N(t) d t
$$

Pf: your HO.

$$
C^{\prime}(t)=\left(\frac{d x}{d t}, \frac{d y}{d t}\right) \text {, so }
$$

$$
\|N(t)\|=\left\|c^{\prime}(t)\right\|=v^{(t)}
$$

dist traveled $s(t)=\int v(t) d t$, so $\frac{d s}{d t}=v(t)$

$$
\begin{array}{r}
\vec{n}(t)=\frac{N(t)}{\|N(t)\|} \\
N(t)=\|N(t)\| \vec{n}(t)=\frac{d s}{d t} \vec{n}(t) \\
\text { so } \quad \iint_{A} \operatorname{div} F d y d x=\int_{C} F \cdot \vec{n} d s
\end{array}
$$

The:

$$
(\operatorname{div} F)(P)=\lim _{r \rightarrow 0} \frac{1}{A(r)} \int_{C_{r}} F \cdot \vec{n} d s
$$

pf: Similar
$F \cdot \vec{n}$ is the component of f normal to the curve. Thus the integral on the right side above is measuring some kind of outward / inward frow.

