
Critical Points

A point P is a critical point of f if grad f(P ) = O. Equivalently, all the partial derivatives

Dif are 0 at P .

Example. Find the critical points of f(x, y) = e−(x2+y2). We take partial derivatives

and set them to 0 to find the critical points.

As in the single variable case, we can have a variety of behaviors at a critical point; we

do not necessarily have a local minimum or local maximum.

Let f be defined on an open set U . A point P is called a local maximum of f if, in

some neighborhood N of P , we have

f(X) ≤ f(P )

for all X ∈ N .

The concept of local minimum is defined similarly.

Theorem. Let f be a differentiable function on U . Let P be a local maximum. Then

P is a critical point of f .

The proof of this amounts to reducing it to a one variable problem. If H is a nonzero

vector, and t is small enough, then P + tH ∈ U . Moreover, if t is small enough, P + tH will

land in the neighborhood mentioned in the definition, so that

f(P + tH) ≤ f(P )

for all t in an interval of the form (−δ, δ), δ > 0. So g(t) = f(P + tH) has a local maximum

at t = 0. Thus g′(t) = 0. By the chain rule,

grad f(P ) ·H = 0.

This is true for all H, so we must have grad f(P ) = 0. ■

A similar argument shows that local minima are also critical points of f .

Boundary, Interior, etc.

An open ball of radius r > 0 in Rn centered at P is defined to be the set of all points X

such that ∥X − P∥ < r.

A closed ball is similarly defined except ∥X − P∥ ≤ r (rather than strict inequality).

A subset U ⊆ Rn is open if at every point P ∈ U , there is a ball of some radius around

P contained entirely in U .

Note that open balls are indeed open sets.

An interior point P of a set S ⊆ Rn is one such there exists a ball of some radius

around P contained entirely in S. Thus one could rephrase the definition of openness as

each point being an interior point.

A point P (not necessarily in S) is called a boundary point of S if every open ball

around P contains both a point in S and a point not in S.

A set is closed if it contains all of its boundary points. We note that a closed ball is

indeed closed.
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A set is bounded if one can fit the set inside a ball. Equivalently, S is bounded if there

is some b > 0 such that ∥X∥ ≤ b for all X ∈ S.

Theorem. Let f be a continuous function defined on a closed and bounded set S. Then

f has a maximum and a minimum on S.

The proof of this requires things out of the scope of this course.

One can see via examples that a continuous f can fail to achieve extreme values if S is

not closed and bounded. As an easy example, consider f : (0, 1) → R, f(x) = x.

In a general situation for some f on a closed and bounded region S, we find the maxima

and minima by looking at the critical points in the interior of S. One must also look at the

values of f on the boundary, however.

Example. Find the maxima and minima of f(x, y) = x3+xy on the square with vertices

(±1,±1). We do this by finding the critical points on the interior, and then also testing

the boundary points by parametrizing the four sides that make up the square and plugging

those parametrizations into f .

Example. Find the maximum of the function

f(x, y) = x2e−x4−y2

.

This function goes to 0 as the distance from the origin goes to ∞. This implies that the

function indeed achieves a maximum (as a result of the above theorem).

Lagrange Multipliers

Now suppose we are trying to find minima and maxima of a function f : Rn → R, but have
the added constraint that we can only plug in points lying on the curve/surface g(X) = 0

where g is some other function.

Theorem. Let f and g be differentiable functions on U with continuous partial deriva-

tives. Let S be the set of points X where g(X) = 0 and grad g(X) ̸= O. Suppose that P is

an extremum of f on S. Then there is some number λ such that

grad f(P ) = λ grad g(P ).

To get a sense of why this is true, let X(t) be a differentiable curve passing through P ,

say X(t0) = P . Then f(X(t)) has a maximum or minimum at t0. So

d

dt
f(X(t))

∣∣∣∣
t0

= 0.

But the chain rule implies

0 =
d

dt
f(X(t))

∣∣∣∣
t0

= grad f(P ) ·X ′(t0).

So grad f(P ) is perpendicular to every curve on the surface passing through P . In other

words, grad f(P ) and grad g(P ) are both perpendicular to the surface g(X) = 0 at the point

P . So one is a multiple of the other.

This theorem gives us a way of finding the extrema of f subject to a constraint. The
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theorem says that if you have an extreme value, this equation involving the gradients must

hold. So one can solve this equation to get a list of points that are candidates for the

extreme values and then figure out the max and min by inspection. In other words, the

theorem says, “If there are any extreme values, this is where they would have to be.”

Example. Find the maximum of the function f(x, y, ) = x+y subject to the constraint

x2 + y2 = 1. We have grad f = (1, 1) and grad g = (2x, 2y). So suppose (x0, y0) is an

extreme value. The equation grad f(x0, y0) = λg(x0, y0) yields the two equations

1 = 2λx0, 1 = 2λy0.

So x0 and y0 are nonzero. Hence λ = 1/(2x0) = 1/(2y0), meaning x0 = y0. This point must

also satisfy x2
0 + y20 = 1, so that gives the possibilities

x0 = ± 1√
2
, y0 = ± 1√

2
.

So the two solutions to the system of equations are (−1/
√
2,−1/

√
2) and (1/

√
2, 1/

√
2).

The maximum obviously corresponds to the latter, where f has the value 2/
√
2.

Taylor’s Theorem Revisited

Recall that for single variable smooth function f , Taylor’s theorem gives us

f(a+ h) = f(a) + f ′(a)h+
f ′′(a)

2
h2 +R3,

where R3 = f(3)(c)
3! h3 for some number c between a and a+ h.

Let’s see how to carry this over to two-variable functions. Let P = (x0, y0) and H =

(h, k), and assume that P ∈ U for some open set U on which f is defined with continuous

partial derivatives up to order 3. We want to obtain a similar expansion to the one above.

Define

g(t) = f(P + tH), t ∈ [0, 1].

Assume that P + tH ∈ U for all t ∈ [0, 1]. We note that g(0) = f(P ), g(1) = f(P + H).

Then g(t) is differentiable (by chain rule), and we can apply the single-variable Taylor’s

theorem:

g(1) = g(0) + g′(0) +
g′′(0)

2
+R3.

Here, we’re using a value of h = 1. So our remainder R3 has the form

R3 =
1

3!
g(3)(τ),

where τ lies between 0 and 1.

Now we have

g′(t) = grad f(P + tH) ·H = D1f(P + tH)h+D2f(P + tH)k,

which comes from the chain rule and then writing things out in coordinates. For t = 0, this
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yields

g′(0) = D1f(P )h+D2f(P )k.

Let’s rewrite g′(t) as

g′(t) = f1(P + tH), f1 = hD1f(P + tH) + kD2f(P + tH).

We can then apply chain rule once more as

g′′(t) = hD1f1(P + tH) + kD2f1(P + tH) =
(
h2D2

1f + 2hkD1D2f + k2D2
2f
) ∣∣∣∣

P+tH

.

Putting it all together and substituting t = 0, we get

f(P +H) = f(P ) +D1f(P )h+D2f(P )k

+
1

2

[
D2

1f(P )h2 + 2D1D2f(P )hk +D2
2f(P )k2

]
+R3.

If we write P = (x0, y0) and use a slightly different notation, we get

f(x0 + h, y0 + k)− f(x0, y0) = fxh+ fyk

+
1

2

[
fxxh

2 + 2fxyhk + fyyk
2
]

+R3

where all the derivatives are understood to be evaluated at P .

Note also that if we write X = P +H, we can write the above as

f(x, y)− f(x0, y0) = fx(P )(x− x0) + fy(P )(y − y0)

+
1

2
[fxx(P )(x− x0)

2 + 2fxy(P )(x− x0)(y − y0) + fyy(P )(y − y0)
2]

+R3

Notice that at a critical point (i.e. where fx = fy = 0), the first order terms drop off,

and so the behavior of the function is essentially determined by the term

Q(h, k) := ah2 + 2bhk + ck2

where a = fxx(P ), b = fxy(P ), c = fyy(P ). Thus examining this quadratic form Q will

reveal the local min/max behavior of the function at the point P . Note that if a, b, c are all

0, we’re in a tough spot, because then we would have to look at the cubic terms in Taylor’s

formula, which is no fun. So we assume at least one of a, b, c is nonzero.

Quadratic Forms

As above let

Q(x, y) = ax2 + 2bxy + cy2.

4



A quadratic form of the type above is said to be definite if it attains values of one sign

only (either all positive or all negative), except at (0, 0), where Q is of course 0. x2 + y2 is

an easy example.

Q(x, y) is indefinite if it can assume values of both signs. xy is such an example.

Q(x, y) is semi-definite if it vanishes for values other than (x, y) = (0, 0) but otherwise

only takes values of one sign. (x− y)2 is an example of this.

Now, if a = c = 0, our form is 2bxy which is indefinite. So suppose one of a or c is

nonzero. Suppose for concreteness that a ̸= 0. Then

Q(x, y) = a

[(
x+

b

a
y

)2

+
ca− b2

a2
y2

]
.

If ca− b2 > 0, our form is definite (why?). If ca− b2 < 0, it is indefinite. If ca− b2 = 0 it is

semidefinite.

If a > 0, then the definite and semidefinite cases yield a local min for Q(x, y). The

indefinite case yields a saddle point. If a < 0, then we have the same except replace the

word max with max.

The semidefinite case is much harder to analyze. For instance, suppose a function has

the Taylor expansion f(x+h, y+h) = (h−k)2+k3. Although the corresponding quadratic

form has a local min, the x3 term complicates things. In general, the semidefinite case

requires one to look at the higher order terms, so we put this case aside for now.

Example. Q(x, y) = 3x2 − 4xy − 4y2. We may complete the square and write this as

Q(x, y) = 3

[(
x− 2

3
y

)2

− 16

9
y2

]
.

So Q is indefinie.

Example. Q(x, y) = −3x2 + 5xy − 7y2. We can complete the square to get

Q(x, y) = −3

[(
x− 5

6
y

)2

+

(
−25

36
+

7

3

)
y2

]
.

Thus Q has a local max at the origin.

The Quadratic Form Associated to a Critical Point

As we mentioned earlier, at a critical points, the behavior of f is determined by the quadratic

terms. We now establish the notion of a quadratic form associated to a critical point, which

is simply the quadratic form you get by extracting the second-order terms in the Taylor

expansion.

Theorem. Let P be a critical point of f , and suppose that the associated quadratic

form q(h, k) is definite or indefinite (so we exclude the semidefinite case). Then f has a

local maximum, minimum, or saddle point according to the behavior of the associated form

q(h, k).

Example. Let

f(x, y) = log
(
1 + x2 + y2

)
.
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We aim to find and classify the critical points. We have

fx =
2x

1 + x2 + y2
, fy =

2y

1 + x2 + y2
.

So have one critical point P = (0, 0). To get the associated quadratic form, we have to take

some derivatives.

fxx =
2(1 + x2 + y2)− (2x)(2x)

(1 + x2 + y2)2
,

fyy =
2(1 + x2 + y2)− (2y)(2y)

(1 + x2 + y2)2
,

fxy =
−(2x)(2y)

(1 + x2 + y2)2
.

Evaluating at (0, 0), we find the associated quadratic form is

2x2 + 2y2.

One sees by inspection of this form that (0, 0) is a local minimum.

Example. Let

f(x, y) = x− x3y + y2.

First, we compute the first derivatives

fx = 1− 3x2y, fy = −x3 + 2y.

Setting these equal to 0 and solving gives one critical point P at((
2

3

)1/5

,
1

2

(
2

3

)3/5
)
.

And now we compute more derivatives and hopefully survive the process.

fxx = −6xy, fyy = 2, fxy = −3x2.

Evaluating at our critical point and computing the associated form yields

q(h, k) = −3

(
2

3

)4/5

h2 − 6

(
2

3

)2/5

hk + 2k2.

Rearranging things a little yields

q(h, k) = −3

(
2

3

)4/5
(h+

(
2

3

)−2/5

k

)2

−

(
4

3

(
2

3

)−4/5
)
k2

 .

We see this form is indefinite, and we conclude that P is a saddle point.
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