
Functions of Several Variables

Lang has a very specific definition of function. He requires that the output of f is a number.

The input can be any subset of n-space.

Example. f : R2 → R defined by f(x, y) =
√
x2 + y2. We can interpret f as a function

that tells us our distance to the origin when we’re standing at a point (x, y).

Example. f : R3 → R defined by f(x, y, z) = x2 − sin(xyz) + yz3.

The graph of a function on defined on S ⊂ R2 would have the form

{(x, y, f(x, y)) : (x, y) ∈ S}.

In this case, the graph sits in R3.

For a fixed number c, the equation f(x, y) = c describes a curve in R2. Such a curve is

called a level curve.

Question. What do the level curves of f(x, y) = x2 + y2 look like? What about

f(x, y) =
√
x2 + y2.

If f(x, y, z) is a function of three variables, the equation f(x, y, z) = c describes a surface,

called a level surface.

Question. What do the level surfaces of f(x, y, z) = x2+y2+z2 look like? What about

f(x, y, z) = 3x2 + 2y2 + z?

Partial Derivatives

First consider a function of two variables f(x, y). If we hold one of the variables fixed and

allow the other to vary, we obtain a function of one variables, and we can take the derivative

as we did in Calc I:

lim
h→0

f(x+ h, y)− f(x, y)

h
.

This is the partial derivative with respect to the first variable or the partial deriva-

tive with respect to x. The second partial derivative would be

lim
h→0

f(x, y + h)− f(x, y)

h
.

Notations for this include D1f,D2f ;
∂f
∂x ,

∂f
∂y ; fx, fy. And of course, we can extend these

ideas to functions of 3 or more variables.

Example. Let f(x, y) = x2y3. To compute ∂f/∂x, we treat y as a constant and

differentiate as usual:
∂f

∂x
= 2xy3.

Similarly,
∂f

∂y
= 3x2y2.

Geometrically, for functions of two variables, taking a partial derivative corresponds to

slicing the graph at x = a or y = a for a constant a and then looking at the slope of the

tangent.

Note that Dif is itself a function that we can evaluate at points.
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Example. Let f(x, y) = sin(xy). Compute D2f(1, π).

D2f(x, y) = cos(xy)x.

So then

D2f(1, π) = cos(π) · 1 = −1.

Notice that we can use vector notation and write the partial derivative with respect to

xi as

(Dif)(X) = lim
h→0

f(X + hEi)− f(X)

h
.

The gradient of a function is the vector-valued function

grad f(x, y) =

(
∂f

∂x
,
∂f

∂y

)
.

One can easily generalize this definition to higher dimensions.

Example. Let f(x, y, z) = x2y sin(yz). Find grad f(1, 1, π).

We note that for functions f, g and any constant c

grad(f + g) = grad f + grad g, grad(cf) = c grad f.

Continuity

(For this section, I’ll be borrowing from both Lang and Courant)

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be points. The distance between them is

d(x, y) = ∥x− y∥ =
√
(x1 − y1)2 + · · ·+ (xn − yn)2.

In the case where n = 1 (i.e. when x and y are just numbers), we see the distance is the

absolute value of the difference x− y (recall that
√
x2 = |x|).

If a and b are nonnegative and a ≤ b, then
√
a ≤

√
b. Conversely, if

√
a ≤

√
b, then

a ≤ b. In particular, we have |x| =
√
x2 ≤

√
x2 + y2. In the same way, |y| ≤

√
x2 + y2, and

of course, this works for more than just two variables.

Recall the idea of a function being continuous at x0 ∈ X. Intuitively, this means that as

x gets closer to x0, f(x) gets closer f(x0).

Definition. A function f(x, y) defined on a region R is continuous at a point (x0, y0) ∈
R if, for every positive number ϵ, one can find a corresponding positive number δϵ such that

d((x0, y0), (x, y)) < δϵ (where (x, y) ∈ R) guarantees d(f(x, y), f(x0, y0)) < ϵ.

Example. Let’s look at a single variable example first. Let f(x) = 10x. Let us show

that f is continuous at 0. So let x0 = 0. Then f(x0) = f(0) = 0. Now, somebody hands

us some ϵ > 0, and we need to respond by finding a δ > 0 such that x being within δ of x0

guarantees that f(x) is within ϵ of f(x0). Now,

|f(x)− f(x0)| = |10x| = 10|x|,

while

|x− x0| = |x|.
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Let δ = ϵ/10. Then if d(x0, x) = |x− x0| < δ, we have

|f(x)− f(x0)| = 10|x| = 10|x− x0| < 10(ϵ/10) = ϵ.

This shows that f is continuous at x0 = 0. In this case, the same argument works at any

x0, not just 0.

A function of several variables can have discontinuties of a more complicated type.

Example. Let f(x, y) = 2xy
x2+y2 , f(0, 0) = 0. If we approach the origin along the x-axis

(i.e. along y = 0), we have f(x, 0) = 0. Similarly, f(0, y) = 0. On the other hand, if we

approach the origin along the line y = x, we have f(x, x) = 2x2/(2x2) = 1. Thus f cannot

be continuous at (0, 0).

Definition. We say that the limit of f(x, y) as (x, y) approaches (x0, y0) equals L if,

for every positive number ϵ, one can find a corresponding positive number δϵ such that

0 < d((x0, y0), (x, y)) < δϵ guarantees d(f(x, y), L) < ϵ. One writes

lim
(x,y)→(x0,y0)

f(x, y) = L.

Differentiability

In initial attempt to define differentiability of functions of several variables, one might be

tempted to write down something like

f(X +H)− f(X)

H
.

This doesn’t make sense, though, because we have no notion of dividing by vectors.

Let us look back to the single variable case first. The derivative in this case was defined

to be

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Let

φ(h) =
f(x+ h)− f(x)

h
− f ′(x).

φ(h) is not defined for h = 0, but

lim
h→0

φ(h) = 0.

We can go ahead and just set φ(0) = 0. We can also write

f(x+ h)− f(x) = f ′(x)h+ hφ(h),

and this is true for h = 0 now as well. We will now do a silly thing: let g(h) = φ(h) for

h > 0 and g(h) = −φ(h) for h < 0. This is simply so that we now have

f(x+ h)− f(x) = f ′(x)h+ |h|g(h)

where limh→0 g(h) = 0.

Conversely, suppose that there exists some number a and a function g(h) with limh→0 g(h) =
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0 such that

f(x+ h)− f(x) = ah+ |h|g(h).

Then when h = 0, we have

f(x+ h)− f(x)

h
= a+

h

|h|
g(h).

As h → 0, the rightmost term goes to 0 and we see that f is differentiable. In fact, f ′(x) = a.

This discussion is all to say that we could very well take this to be the definition of

differentiability. In words, differentiability at a point x0 is equivalent to a function hav-

ing a “good” linear approximation. Here, “good” means that the difference between the

approximation and f shrinks faster than |h|. This is maybe more easily seen if we write

f(x+ h)− (f(x) + ah) = |h|g(h)

and then dividing by |h|.
It is this definition that will be easier to adapt to the higher dimension situation. We

will start with two variables. Let X = (x, y), H = (h, k), so that X +H = (x + h, y + k)

and

f(X +H)− f(X) = f(x+ h, y + k)− f(x, y).

Definition. f is differentiable at X if the partial derivatives exist and if there exists a

function g (defined for small H) with limH→O g(H) = 0 such that

f(X +H)− f(X) = grad(f) ·H + ∥H∥g(H).

Theorem. Let f be defined on an open set U . Assume that the partial derivatives exist

and are continuous at each point of U . Then f is differentiable.

Most functions we encounter will be differentiable.

Repeated Partial Derivatives

Differentiation gives us a new function, and of course, we can differentiate again.

Example. Let f(x, y) = cos(xy). Then D1f = −y sin(xy), D2f = −x sin(xy). Differ-

entiating again, we have

D2D1f = D2(−y sin(xy)) = − sin(xy) + xy cos(xy).

We also have

D1D2f = D1(−x sin(xy)) = − sin(xy) + xy cos(xy).

We see they agree!

Theorem. If D1f , D2f , D1D2f , and D2D1f all exist and are continuous, then

D1D2f = D2D1f.

This generalizes to higher derivatives as well (i.e. in practice, we can always swap derivative

operators around).
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