Surface Parametrization

A curve can be described by an algebraic equation such as

$$
x^{2}+y^{2}=1,
$$

or it can be given parametrically c.g. $(\cos t, \sin t) \quad 0 \leq t \leq 2 \pi$.

A parametrization $C(t)=[a, b] \rightarrow \mathbb{R}^{2}$ can be thought of as a way of "sewing" the interval $[a, b]$ into the fabric that is R^{2}.
we can move this idea one dimension up.

$$
\begin{array}{rl}
R & x \mathbb{R}^{2}, R \\
x(t, u)= & \left(x_{1}(t, u), x_{2}(t, u), x_{3}(t, u)\right) \\
x_{i}: R & \rightarrow \mathbb{R}
\end{array}
$$

Now we're sewing a "sheet" into the fabric of space

$E x:$

$$
X(t, u)=(\rho \sin t \cos u, \rho \sin t \sin u, \rho \cos t)
$$

$p \in \mathbb{R}$

$$
\begin{aligned}
& 0 \leq t \leq \pi \\
& 0 \leq u<2 \pi
\end{aligned}
$$

Ex: torns

$$
\begin{array}{ll}
x=(a+b \cos \varphi) \cos \theta & \quad \varphi \in[0,2 \pi] \\
y=(a+b \cos \varphi) \sin \theta & \theta \in[0,2 \pi] \\
z=b \sin \varphi .
\end{array}
$$

Break green vector B into component along $A(\theta)$ and the vertical component.

$$
\begin{aligned}
& B_{A(\theta)}=b \cos \varphi(\cos \theta, \sin \theta, 0) \\
& B_{\text {vert }}=b \sin \varphi(0,0,1)
\end{aligned}
$$

$$
\begin{aligned}
& A(\theta)+B_{A(\theta)}+B_{v e r t} \\
&=(a \cos \theta+b \cos \varphi \cos \theta, a \sin \theta+b \cos \varphi \sin \theta, \\
&b \sin \varphi)
\end{aligned}
$$

Let R be a region in \mathbb{R}^{2} ad $X(t, n)$ a parametrized surface.

The curves $C_{1}(t)=x(t, u)$ and $C_{2}(u)=x(t, u)$ are then curves sitting inside the surface

A_{1} and A_{2} are tangent vectors to the surface.

The tangent plane of the surface at this point $x\left(t_{0}, u_{0}\right)$ is the plane through $X\left(t_{0}, u_{0}\right)$ thant is parallel to both A_{1} and A_{2}.

Equivalently, it is the plane through $x\left(t_{0}, u_{0}\right)$ normal to $A_{1} \times A_{2}$.

$$
N(t, u)=\frac{\partial x}{\partial t} \times \frac{\partial x}{\partial u}
$$

\rightarrow normal to the surface at each (t, u)

The order in which we take the cross product flips the normal vector.
For a closed onientable surface, me of these points inward, the other outusard.

$$
\vec{n}=\frac{N}{\|N\|}=\frac{\frac{\partial x}{\partial t} \times \frac{\partial x}{\partial u}}{\left\|\frac{\partial x}{\partial t} \times \frac{\partial x}{\partial u}\right\|}
$$

Ex: $x(\varphi, \theta)=(p \sin \varphi \cos \theta, p \sin \varphi \sin \theta, p \cos \varphi)$

$$
\begin{aligned}
(N(\varphi, \theta) & =p \sin \varphi x(\varphi, \theta)) \\
(\|N(\varphi, \theta)\| & \left.=\rho^{2} \sin \varphi\right) \\
\vec{n} & =\frac{1}{\rho} X(\varphi, \theta)
\end{aligned}
$$

Surface Area

area of parallelogram

$$
\|A \times B\|=\|A\|\|B\| \sin \theta
$$

For small changes $\Delta t, \Delta u$ in t, u

the area $\left\|\left(\Delta u \frac{\partial x}{\partial u}\right) \times\left(\Delta t \frac{\partial x}{\partial t}\right)\right\|$ approximates the blue patch quite well.

$$
\text { Area }(s)=\iint_{s} d \sigma=\iint_{R}\left\|\frac{\partial x}{\partial t} \times \frac{\partial x}{\partial u}\right\| d t d u
$$

Random Aside: computing $\int_{-\infty}^{\infty} e^{-x^{2}} d x$

$$
\begin{aligned}
& \left.\int_{-R}^{R} \int_{-R}^{R} e^{-x^{2}-y^{2}} d y\right] d x \\
= & \int_{-R}^{R} e^{-x^{2}}\left[\int_{-R}^{R} e^{-y^{2}} d y\right] d x \\
= & \left(\int_{-R}^{R} e^{-x^{2}} d x\right)\left(\int_{-R}^{R} e^{-y^{2}} d y\right) \\
= & \left(\int_{-R}^{R} e^{-x^{2}} d x\right)^{2}
\end{aligned}
$$

From HW, (1) $\rightarrow \pi$ as $R \rightarrow \infty$.
so $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$

Ex

$$
\begin{aligned}
& X(\varphi, \theta)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \\
& \frac{\partial x}{\partial \varphi}=(\rho \cos \varphi \cos \theta, \rho \cos \varphi \sin \theta,-\rho \sin \varphi) \\
& \frac{\partial x}{\partial \theta}=(-\rho \cos \varphi \sin \theta, \rho \cos \varphi \cos \theta, 0)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial x}{\partial \varphi} \times \frac{\partial x}{\partial \theta} & =\left|\begin{array}{ccc}
E_{1} & E_{2} & E_{3} \\
p \cos \varphi \cos \theta & p \cos \varphi \sin \theta & -p \sin \varphi \\
-p \cos \varphi \sin \theta & p \cos \varphi \cos \theta & 0
\end{array}\right| \\
& =\cdot=\rho^{2} \sin \varphi \\
\text { Area } & =\int_{0}^{2 \pi} \int_{0}^{\pi} \rho^{2} \sin \varphi d \varphi d \theta \\
& =\rho^{2} \int_{0}^{2 \pi}-\left.\cos \varphi\right|_{\varphi=0} ^{\varphi=\pi} d \theta=\rho^{2} \cdot 2 \int_{0}^{2 \pi} d \theta=4 \pi \rho^{2}
\end{aligned}
$$

A noteworthy special case:
Let $z=f(x, y)$ be a surface.
Then we have the natural parametrization

$$
\begin{aligned}
& x(x, y)=(x, y, f(x, y)) \\
& \frac{\partial x}{\partial x}=\left(1,0, \frac{\partial f}{\partial x}\right) \\
& \frac{\partial x}{\partial y}=\left(0,1, \frac{\partial f}{\partial y}\right) \\
& \frac{\partial x}{\partial x} \times \frac{\partial x}{\partial y}=\left(-\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, 1\right) \\
& \text { Sur } \frac{\partial x}{\partial x} \times \frac{\partial x}{\partial y} \|=\sqrt{1+f_{x}^{2}+f_{y}^{2}} \\
& \text { area }=\iint_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A
\end{aligned}
$$

Ex:- Find the area of the paraboloid $z=x^{2}+y^{2}$ where $0 \leq z \leq 2$.

$$
\begin{aligned}
\text { Area } & =\iint_{R} \sqrt{1+(2 x)^{2}+(2 y)^{2}} d t \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \sqrt{1+4 r^{2}} r d r d \theta \\
& =\cdots=13 \pi / 3
\end{aligned}
$$

Tutegoal of a function over a suffice

$$
d \sigma=\left\|\frac{\partial x}{\partial t} \times \frac{\partial x}{\partial u}\right\| d t d u
$$

differential surface area

$$
\iint_{S} \psi d \sigma=\iint_{R} \psi(x(t, u))\left\|\frac{\partial x}{\partial t} \times \frac{\partial x}{\partial u}\right\| d t d u
$$

Ex: Let S be the surface defined by

$$
z=x^{2}+y, \quad 0 \leq x \leq 1,-1 \leq y \leq 1
$$

Find $\iint_{s} x d \sigma$

$$
\begin{aligned}
& x(x, y)=\left(x, y, x^{2}+y\right) \\
& d \sigma=\sqrt{1+(2 x)^{2}+1}=\sqrt{2+4 x^{2}} d A \\
& \int_{-1}^{1} \int_{0}^{1} x \sqrt{2+4 x^{2}} d x d y \\
& =\int_{-1}^{1} \int_{0}^{1} x\left(2+4 x^{2}\right)^{1 / 2} d x d y \\
& =2 \int_{0}^{1} x\left(2+4 x^{2}\right)^{1 / 2} d x \\
& =\left.2 \cdot \frac{2}{3}\left(2+4 x^{2}\right)^{3 / 2} \cdot \frac{1}{8}\right|_{0} ^{1} \\
& =\left.\frac{1}{6}\left(2+4 x^{2}\right)^{3 / 2}\right|_{0} ^{1}=\frac{1}{6}\left(6^{3 / 2}-2^{3 / 2}\right)
\end{aligned}
$$

One can think of φ as the density $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$ at a given point \& the surface.

Integral of a vector field over a surface. simple example
solar panel
w area A

solar energy density on earth is $\approx 1370 \omega / \mathrm{m}^{2}$

For a fixed time of day and a small region on carte, the field associated with the solar field is constant F.

The energy the panel is absorbing (assuming it's absorbing $100^{\circ} \%$) is then

$$
(F \cdot \vec{n}) A=F \cdot(A \vec{n}) \text { (watts) }
$$

F parallel to \vec{n} yield, greatest power untput
Now the idea B to vary the field and the direction f the surface:

$$
\left.\iint_{S} F \cdot \vec{n} d \sigma=\iint_{R} F \cdot \vec{n}| | \frac{\partial x}{\partial t} \times \frac{\partial x}{\partial w} \right\rvert\, d d d n
$$

where \vec{n} is the "outward" whit normal to surface at any given point.

Note: $\quad \vec{n}\left\|\frac{\partial x}{\partial t} \times \frac{\partial x}{\partial u}\right\|=\frac{\partial x}{\partial t} \times \frac{\partial x}{\partial u} \quad$ by defin

$$
\text { so } \iint_{S} F \cdot \vec{n} d \sigma=\iint_{R} F(x(t, n)) \cdot\left(\frac{\partial x}{\partial t} \times \frac{\partial x}{\partial u}\right) d t d u
$$

Often called "the flux of F through S "

Ex: $F(x, y)=(x, y, 0), \quad s=\left\{x^{2}+y^{2}+z^{2}=a^{2}\right\}$ w) outward orientation

$$
N(\varphi, \theta)=\frac{\partial x}{\partial \varphi} \times \frac{\partial x}{\partial \theta}=\operatorname{arin} \varphi x(\varphi, \theta)
$$

since $\varphi \in[0, \pi], N(\varphi, \theta)$ points in the direction of the position rector $X(\varphi, \theta)(\sin \varphi \geqslant 0)$

$$
\begin{aligned}
& F(x(\varphi, \theta)) \cdot N(\varphi, \theta) \\
& =(a \sin \varphi)\left(a^{2} \sin ^{2} \varphi\right)=a^{3} \sin ^{3} \varphi \\
\iint_{S} F \cdot \vec{n} d \sigma & =a^{3} \iint_{0}^{2 \pi} \sin ^{3} \varphi d \varphi d \theta \\
& =2 \pi a^{3} \int_{0}^{\pi} \sin ^{3} \varphi d \varphi \\
& =\left.2 \pi a^{3}\left(-\cos \varphi+\frac{1}{3} \cos ^{3} \varphi\right)\right|_{0} ^{\pi}=2 \pi a^{3} \frac{4}{3}=\frac{8 \pi a^{3}}{3}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\left(\int \sin ^{3} \varphi d \varphi\right. & =\int\left(1-\cos ^{2} \varphi\right) \sin \varphi d \varphi \\
& =\int \sin \varphi-\int \cos ^{2} \varphi \sin \varphi \\
& =-\cos \varphi+\frac{1}{3} \cos ^{3}(\varphi)
\end{array}\right)
$$

Note: if your parametrization gives the opposite $N(t, u)$ of the one yon wort, you can just compide the integral and flip the sign at the end.

