Triple Integrals
The ideas are largely the same as in the tho-variable case.

$$
R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times\left[a_{3}, b_{3}\right]
$$

$$
\operatorname{vol}(R)=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)\left(b_{3}-a_{3}\right)
$$

Thu: Suppose A is a region described by

$$
\begin{aligned}
& a \leq x \leq b, \quad g_{1}(x) \leq y \leq g_{2}(x) \\
& \text { and } \quad h_{1}(x, y) \leq z \leq h_{2}(x, y) .
\end{aligned}
$$

Let f be continuous on A. Then

$$
\iiint_{A} f=\int_{a}^{b}\left[\int_{g_{(x)}\left(h_{1}(x, y)\right.}^{g_{2}(x)}\left(\int_{h_{2}}^{h_{2}(x, y)} f(x, y, z) d z\right) d y\right] d x
$$

Ex: Consider the tetrahedron T wi vertices

$$
(0,0,0),(0,0,1),(0,1,0),(1,0,0)
$$

\rightarrow imagine this as a solid

$$
T=\{(x, y, z) \in \mathbb{R}^{3}: \overbrace{\substack{0 \leq z \leq 1-x-y \\ 0 \leq y \leq 1-x \\ 0 \leq x \leq 1}}\}
$$

so if f is a function defined $u T$,

$$
\begin{aligned}
& \iiint_{T} f=\int_{0}^{1-x} \int_{0}^{1-x-y} \int_{0}^{1-x-y} f d z d y d x \\
& \operatorname{vol}(T)=\iiint 1 d z d y d x=\frac{1}{6}
\end{aligned}
$$

Ex: what region is described by

$$
0 \leq x \leq 1, \quad 0 \leq y \leq \sqrt{1-x^{2}}, 0 \leq z \leq \sqrt{1-x^{2}-y^{2}} ?
$$

Cylindrical coordinates

$$
G:\left\{\begin{array}{c}
x=r \cos \theta \\
y=r \sin \theta \\
z=z
\end{array}\right.
$$

point is specified by a radius, angle, then height.

The volume of $G(B)$ is

$$
\begin{aligned}
& \left(z_{2}-z_{1}\right)\left(\frac{r_{2}^{2}-r_{1}^{2}}{2}\right)\left(\theta_{2}-\theta_{1}\right) \\
& =\Gamma\left(z_{2}-z_{1}\right)\left(r_{2}-r_{1}\right)\left(\theta_{2}-\theta_{1}\right)
\end{aligned}
$$

Thu: Let A be the region in (x, y, z)-space whose cylindrical coordinates satisfy

$$
\begin{aligned}
& a \leq \theta \leq b \quad(\text { and } b \leq a+2 \pi) \\
& 0 \leq g_{1}(\theta) \leq r \leq g_{2}(\theta) \\
& h_{1}(\theta, r) \leq z \leq h_{2}(\theta, r)
\end{aligned}
$$

Let $f^{*}(\theta, r, z)=f(r \cos \theta, r \sin \theta, z)$

Then

$$
\iiint_{A} f=\int_{a}^{b} \int_{g_{1}(\theta)}^{g_{2}(\theta)} \int_{h_{1}(\theta, r)}^{h_{2}(\theta, r)} f^{*}(r, \theta, z) \underset{\text { this guy again! }}{l} d z d r d \theta \text {. }
$$

Ex 1: Find the mass of a solid bounded by $-\frac{\pi}{3} \leq \theta \leq \frac{\pi}{3}, r=\cos \theta, z=0$, and $z=r$ with density $f^{*}(z, r, \theta)=3 r$.

$$
\left(x-\frac{1}{2}\right)+y^{2} \leq \frac{1}{4}
$$

$$
\int_{-\pi / 3}^{\pi / 3} \int_{0}^{\cos \theta} \int_{0}^{r} 3 r r \cos \theta d z d r d \theta=\ldots
$$

Spherical coords we can also specifyn pt. in 3 -space by two angles θ, ϕ and the distance ρ to the origin.

$$
\left.\begin{array}{ll}
p=\sqrt{x^{2}+y^{2}+z^{2}} \\
z=p \cos \phi \\
y=p \sin \phi \sin \theta \\
x=p \sin \phi \cos \theta
\end{array}\right\} \quad \text { usually } \quad \begin{aligned}
& \theta \in[0,2 \pi] \\
& \\
& \phi \in[0, \pi] \\
& p \in \mathbb{R} \geqslant 0
\end{aligned}
$$

Ex: The sphere of radius a centered at $(0,0,0)$ is

$$
p=a .
$$

The region $A=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leqslant a^{2}\right\}$
corresponds in (p, φ, θ) space to the set A^{*} defined by

$$
p \leq a \text {. }
$$

Ex: $\quad z=\sqrt{x^{2}+y^{2}}$
\downarrow

$$
\begin{gathered}
p \cos \varphi=p \sin \varphi \\
\Rightarrow \cos \varphi=\sin \varphi \\
\Rightarrow \varphi=\pi / 4 .
\end{gathered}
$$

So this core in $(\varphi, \varphi, \theta)$ space is described simply by $\varphi=\pi / 4$.
What if we wanted a solid cone?

$$
\begin{aligned}
& \iiint_{A} f(x, y, z) d z d y d x=\iiint_{A^{*}} f^{*}(p, \theta, \varphi) p^{2} \sin \varphi d p d \varphi d \theta \\
& d V=d z d y d x=r d z d r d \theta=p^{2} \sin \phi d z d \varphi d \theta
\end{aligned}
$$

"volume elements" in the three coordinate systems

Ex: Find tue volume of above the cone (1) $z^{2}=x^{2}+y^{2}$ and inside the sphere
(2)

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}=z \\
\Uparrow \\
x^{2}+y^{2}+\left(z-\frac{1}{2}\right)^{2}=\frac{1}{4}
\end{gathered}
$$

(2) becomes $p^{2}=p \cos \varphi$

$$
\Rightarrow \rho=\cos \varphi
$$

(i) becomes $\varphi=\pi / 4$

The region is the set of pts sit.

$$
\begin{aligned}
& 0 \leqslant \theta \leqslant 2 \pi \\
& 0 \leqslant \varphi \leqslant \pi / 4 \\
& 0 \leqslant \rho \leqslant \cos \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \text { so } 20 /(A)=\int_{0}^{2 \pi} \int_{0}^{\pi / \varphi} \int_{0}^{\cos \varphi} \rho^{2} \sin \varphi d \rho d \varphi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \frac{\rho^{3}}{3} \sin \varphi\right|_{\rho=0} ^{\rho=\cos \varphi} d \varphi d \theta \\
& =\frac{1}{3} \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \cos ^{3} \varphi \sin \varphi d \varphi d \theta \\
& =\frac{1}{3} \int_{0}^{2 \pi}-\left.\frac{\cos ^{4} \varphi}{4}\right|_{\varphi=0} ^{\varphi=\pi / 4} d \theta\left(\frac{1}{\sqrt{2}}\right)^{\varphi}=\frac{1}{4} \\
& =\frac{-1}{12} \int_{0}^{2 \pi}\left(\frac{1}{4}-1\right) d \theta=\left(\frac{-1}{12}\right)\left(\frac{-3}{4}\right) 2 \pi \\
& =\frac{1}{8} \pi .
\end{aligned}
$$

Thu: Let A be the region in \mathbb{R}^{3} whose spherical coordinates satisfy

$$
\left\{\begin{array}{l}
a \leq \theta \leq b \\
g_{1}(\theta) \leq \varphi \leq g_{2}(\theta) \\
h_{1}(\theta, \varphi) \leq p \leq h_{2}(\theta, \varphi)
\end{array}\right.
$$

where $g_{1}, g_{2}, h_{1}, h_{2}$ are smooth functions, $0 \leq b-a \leq 2 \pi$, and $0 \leq g_{1}(\theta) \leq g_{2}(\theta) \leq \pi$.

Then

