
Conservation of Energy

Let U ⊂ Rn be an open set. A vector field F on U is a map F : U → Rn. So F maps

points to vectors with the same dimension. One thinks of vectors fields as a field of arrows

attached to each point of U .

A very simple example of a vector field is the gravitational field

G(x, y, z) = (0, 0,−g).

This is really an approximation of the field if we’re close enough to Earth’s surface. One

imagines a bunch of arrows pointing downward. If we introduce a point mass m into the

field, the mass feels a force of mG = (0, 0,−gm).

If F is a vector field and there exists some (scalar-valued) function f such that

grad f = F

then f is said to be conservative. The function f is called a potential function for F . For

technical reasons in physics, sometimes the definition uses − grad f instead, and we note

that − grad f = grad(−f), so there’s no real difference.

Suppose a particle of massm moves in U on which a field of forces F : U → R3 is defined.

That is, F (x, y, z) is the force the particle is experiencing if it is positioned at (x, y, z). Let

C(t) be a parametrization of the particle’s path. Then Newton’s law says that the force

acting on the particle is equal to the mass times its acceleration:

F (C(t)) = mC ′′(t).

The kinetic energy of a particle is

1

2
m∥C ′(t)∥2.

Conservation Law. Suppose that F is a conservative vector field and ψ satisfies

F = − gradψ. That is, ψ is the potential energy of the system. Suppose a particle of mass

m moves (according to Newton’s law) where this field is defined and that the field is the

only force acting on the particle. Then the sum of potential and kinetic energy is constant.

We differentiate

ψ(C(t)) +
1

2
m∥C ′(t)∥2

with respect to t to obtain

gradψ(C(t)) · C ′(t) +mC ′(t) · C ′′(t).

Applying Newton’s law, this becomes

gradψ(C(t)) · C ′(t) + C ′(t) · F (C(t)).

Finally, using F = − gradψ, we see these terms cancel each other out.
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Potential Functions

So far, we have seen scalar-valued functions, curves in space, and vector fields. Do not

confuse these notions, warns Lang.

Are potentials unique? The role of a potential is somewhat similar to the role of an

antiderivative in single variable calculus. There we learned an antiderivative is unique up

to a constant. That is, if F and G are two antiderivatives of f , then F = G + C for some

constant C. Well, there’s a slight technicality. Consider the following functions

g(x) = 1/x

and

f(x) =

1/x+ 2, x > 0

1/x− 3, x < 0.

Then f and g have the same derivative, but they do not differ by a constant. The issue

here is that the domain of f and g, which is R \ {0}, is not connected. So the more precise

statement is that antiderivatives are unique up to a constant when the domain is connected.

The definition we’ll take is the following: an open subset U ⊂ Rn is connected if

between any two points in U , there is a differentiable path that joins them. More precisely,

if P and Q lie in U , then there is a differentiable curve X(t) such that X(t0) = P and

X(t1) = Q for some t0, t1.

Theorem. If U is an open connected subset of Rn and f, g are differentiable with

grad f(X) = grad g(X) for each X ∈ U , then there exists a constant k such that

f(X) = g(X) + k

for all X ∈ U .

To prove this, let φ(X) = f(X) − g(X). Then gradφ(X) = 0 for all X ∈ U . Now let

P,Q ∈ U . There is some differentiable curve X(t) connecting P to Q. On the other hand,

d

dt
φ(X(t)) = gradφ(X(t)) ·X ′(t).

But gradφ(X) = 0 for all X ∈ U . Thus this derivative is 0, meaning φ is constant on the

path X(t), which implies φ(P ) = φ(Q). This means φ is constant on U .

In the two variable case, a vector field takes the form

F (x, y) = (f(x, y), g(x, y)).

A potential function φ would then (by definition) satisfy the equations

∂φ

∂x
= f,

∂φ

∂y
= g.

So if we have this potential, then

∂

∂y

(
∂φ

∂x

)
=
∂f

∂y
.
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We also have by the other equation that

∂

∂x

(
∂φ

∂y

)
=
∂g

∂x
.

On the other hand, our theorem about mixed derivatives says that D1D2 = D2D1. Thus

we come to a necessary condition for a potential to exist:

∂g

∂x
=
∂f

∂y
(∗).

This gives a quick test to determine whether a vector field does not admit a potential. If

the above equation doesn’t hold, then there is no possibility for a potential to exist. The

converse is only true under certain conditions. In other words, if you check the above

condition and it holds, it’s still not certain that a potential exists.

Example. Let F (x, y) = (x2y, sin(xy)). We can verify that F does not admit a poten-

tial.

Local Existence of Potential Functions

Theorem. (two-variable case) Let f and g be differentiable real valued functions on an

open set U of the plane. If U is either the entire plane or a rectangle and

∂g

∂x
=
∂f

∂y
,

then the vector field F (x, y) = (f(x, y), g(x, y)) has a potential.

Example. Let F = (2xy, x2+3y2) on U = R2. If we let f and g be the first and second

component functions respectively, then D1g = 2x = D2f . So the above theorem asserts a

potential exists. We can find it by integration. A potential φ must satisfy

∂φ

∂x
= 2xy.

We can integrate with respect to x to get

φ = x2y + u(y)

where u is some function of y. We know also that

∂φ

∂y
= x2 + 3y2 = x2 + u′(y).

This implies u′(y) = 3y2. So we can for instance take u(y) = y3 and let

φ(x, y) = x2y + y3.

We see φ is a potential for F .

Theorem. Suppose F = (f1, f2, f3) is a vector field defined on an open rectangular box
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with differentiable components that have continuous partial derivatives. If

Difj = Djfi

for all indices i and j, then F has a potential function. The above condition means D1f2 =

D2f1, D1f3 = D3f1, and D2f3 = D3f2. The same theorem holds in higher dimensions.

Example. Find a potential for the vector field (defined on 3-space)

F (x, y, z) = (y cos(xy), x cos(xy) + 2yz3, 3y2z2).

If you check the conditions on the derivatives as stated in the theorem, you’ll see that they

hold. So we integrate the first component to see that

φ(x, y, z) = sin(xy) + ψ(y, z)

where ψ(y, z) is some function yet to be determined.

Functions Depending Only on the Distance from the Ori-

gin

Some functions only depend on the distance to the origin. The easiest example of such a

function is

r(x, y) =
√
x2 + y2,

which is the function that maps a point to its distance from the origin. In R3 the corre-

sponding function would be r(x, y, z) =
√
x2 + y2 + z2. In Rn it would be r(x1, . . . , xn) =√

x21 + · · ·+ x2n. In the two-variable case, we have

∂r

∂x
=

x√
x2 + y2

=
x

r
.

A similar computation shows ∂r/∂x = y/r, so that

grad r =
(x
r
,
y

r

)
=

1

r
(x, y).

If we set X = (x, y), then this reads

grad r =
1

r
X.

The same computation works in n dimensions, so the above holds in general.

Example. Let f(x, y) = sin(r) = sin
(√

x2 + y2
)
. Then

∂f

∂x
= cos(r)

x√
x2 + y2

=
cos(r)

r
x,

∂f

∂y
= cos(r)

y√
x2 + y2

=
cos(r)

r
y.

So we see that

grad f(X) =
cos(r)

r
X.
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In general, a function depending only on the radius can be written f = g(r), where

g : R≥0 → R. Bear in mind that r itself is still a function of (x1, . . . , xn), so f = g(r) is a

function is a function from Rn to R. Observe that (take n = 3 for concreteness)

∂f

∂x
= g′(r)

x√
x2 + y2 + z2

=
g′(r)

r
x.

Similar computations hold for D2 and D3, and so we have

grad f(X) =
g′(r)

r
X.

Gravity

Newton’s law of gravitation says that the gravitational force between two bodies is given by

Gm1m2

r2
.

The equal and opposite forces point towards each other. Imagine that m1 is positioned at

the origin and m2 elsewhere. The position vector X of m2 points at m2. If we want to

model the force that m2 is feeling, we need a vector pointing towards the origin. −X does

this. It is desirable to work with unit vectors, since for a unit vector A, ∥cA∥ = |c|∥A∥.
∥X∥ = r, so we have

F (X) =
−Gm1m2

r2
X

r
=

−Gm1m2

r3
X

as the force F acting on m2. To find a potential for f , we use the above formula and set

g′(r)

r
=

−Gm1m2

r3
,

which after solving gives

g(r) =
Gm1m2

r

as a potential. The potential energy of m2 is then

ψ = −g(r) = −Gm1m2

r
.

A Special Vector Field

Let

G(x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
.

To get a sense of what this field looks like, let’s use polar coordinates. Fix a radius r and

vary θ. Substituting x = r cos θ and y = r sin θ, we have

G(x, y) =
1

r
(− sin θ, cos θ).

On the other hand, the velocity of C(t) = (r cos(t), r sin(t)) is C ′(t) = (−r sin(t), r cos(t)),
so the velocity of this circular trajectory is parallel to G(x, y). So our vector field circulates
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around the origin, and the magnitudes shrink as the radius increases. For small radius, the

magnitude is large, and it blows up as we approach the origin, where the vector field is

undefined.

We note that D2f = D1g is satisfed for this vector field. So on any rectangle not

containing the origin, we can find a potential function. One can verify that

φ(x, y) = arctan(y/x)

is a potential defined on any rectangle that doesn’t meet the line x = 0. Geometrically, this

is saying that potential is given by the angle of the point.

In fact, if we delete a small sector near the positive x axis and define φ(x, y) = θ, this is

a potential for G. Here, θ ranges in [0, 2π − c] for any small c > 0.

We’ll see later why one cannot define a potential on all of R2 \ {0}.
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