Points in 2-space, 3 -space, and Beyond

In the same way that we can specify a point in the plane with two numbers, we can specify a point in space with three numbers (x, y, z). In general, in n-space $\left(\mathbb{R}^{n}\right)$, we can specify a point with a list of n numbers $\left(x_{1}, \ldots, x_{n}\right)$.

Given two points in \mathbb{R}^{3}, we can define addition on them by adding corresponding coordinates:

$$
\left(a_{1}, a_{2}, a_{3}\right)+\left(b_{1}, b_{2}, b_{3}\right):=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)
$$

In general,

$$
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right):=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right) .
$$

Example. Let $A=(2,3), B=(-1,1)$. Then $A+B=(1,4)$. The figure looks like a parallelogram.

Example. Let $A=(3,1), B=(1,2)$. Then $A+B=(4,3)$. We obtain a parallelogram again. This is always the case. Starting from the origin $O=(0,0)$, we obtain B by moving 1 unit right and then 2 units up. We get $A+B$ by first moving 3 to the right, then 1 up, and then repeating the same movement we did from the origin to B. In other words, the segment connecting O to B and the one connecting A to $A+B$ are equal length and parallel. Similarly, the segments from O to A and B to $B+A=A+B$ will also be equal length and parallel.

We have some not-so-surprising properties of point addition

- $(A+B)+C=A+(B+C)$
- $A+B=B+A$
- $O+A=A+O=A$
- $A+(-A)=O$
where $O=(0, \ldots, 0)$ and $-A=\left(-a_{1}, \ldots,-a_{n}\right)$. We note that $A \mapsto-A$ corresponds to reflection about the origin.

We can also multiply (or scale) a point $A=\left(a_{1}, \ldots, a_{n}\right)$ by a number c, yielding a point

$$
c A=\left(c a_{1}, \ldots, c a_{n}\right)
$$

For example, if $A=(2,-1,5)$ and $c=7$, then $c A=(14,-7,35)$. We again have some easy properties:

- $c(A+B)=c A+c B$
- $\left(c_{1}+c_{2}\right) A=c_{1} A+c_{2} A$
- $\left(c_{1} c_{2}\right) A=c_{1}\left(c_{2} A\right)$.

We should comment on the geometric meaning of scaling by a number c. Let $A=(1,2)$ and $c=3$. Then $c A=(3,6)$. We see that the effect of multiplying by 3 is to stretch the point A away from the origin by a factor of 3 . If we set $c=1 / 2$, this shrinks A in towards the origin. If we draw a segment from the origin to A, in the former case, scaling by $c=3$ multiplies the length by 3 , and scaling by $c=1 / 2$ cuts the length in half.

Vectors

The discussion above leads us naturally to vectors. Given two points A and B, we can define a located vector as an ordered pair of points (A, B), which is more often written $\overrightarrow{A B}$. We think of this as an arrow connecting A and B, pointing towards B. Two located vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are said to be equivalent if $B-A=D-C$. We always have that $\overrightarrow{A B}$ is equivalent to $\overrightarrow{O(B-A)}$. This is actually the unique vector starting at the origin that is equivalent to $\overrightarrow{A B}$.
$\overrightarrow{A B}$ and $\overrightarrow{P Q}$ are said to be parallel if for some $c \neq 0$, we have $A-B=c(Q-P)$. If $c>0$ we say the vectors have the same direction, and if $c<0$, we say they have the opposite direction.
$\overrightarrow{A B}$ and $\overrightarrow{P Q}$ are said to be perpendicular if $B-A$ and $Q-P$ are perpendicular in the usual geometric sense.

A located vector starting from the origin is completely determined by its endpoint. So an n-tuple will be called either a point or a vector depending on the context and interpretation.

The Dot Product

If $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, their dot product is

$$
\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

Note
Some useful properties are

1. $A \cdot B=B \cdot A$
2. $A \cdot(B+C)=A \cdot B+A \cdot C=(B+C) \cdot A$
3. If x is a number, $(x A) \cdot B=x(A \cdot B), A \cdot(x B)=x(A \cdot B)$
4. If $A=O$, then $A \cdot A=0$. Otherwise, $A \cdot A>0$.

Two vectors A and B are said to be perpendicular or orthogonal if $A \cdot B=0$. For the plane and \mathbb{R}^{3}, we will see that this definition agrees with our previous and more geometric definition of perpendicular.

The norm or magnitude (or length) $\|A\|$ of a vector $A=\left(a_{1}, \ldots, a_{n}\right)$ is

$$
\|A\|=\sqrt{A \cdot A}=\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}} .
$$

Note that $\|-A\|=\|A\|$. More generally, for any number c, we have $\|c A\|=|c|\|A\|$. For two points A, B, the distance between them is

$$
\|A-B\|=\sqrt{(A-B) \cdot(A-B)} .
$$

A vector E is a unit vector if $\|E\|=1$. Dividing a nonzero vector by its norm always yields a unit vector, since

$$
\left\|\frac{A}{\|A\|}\right\|=\frac{1}{\|A\|}\|A\|=1 .
$$

Two nonzero vectors A and B have the same direction if there is some $c>0$ such that $c A=B$. So, for instance, $A /\|A\|$ is a unit vector in the same direction as A.

Perpendicularity, Angle Between Vectors

We have two notions of "perpendicular" floating around. One says A and B are perpendicular if $A \cdot B=0$. The other is the more familiar notion of A and B forming a right angle. Suppose that A and B lie in the plane. We can convince ourselves that A and B form a right angle precisely when

$$
\|A-B\|=\|A+B\|
$$

(a)

(b)

If we accept this, then the equivalence of our two definitions of perpendicularity will follow from

$$
\|A+B\|=\|A-B\| \Longleftrightarrow A \cdot B=0
$$

To prove this, observe that

$$
\begin{aligned}
\|A+B\|=\|A-B\| & \Longleftrightarrow\|A+B\|^{2}=\|A-B\|^{2} \\
& \Longleftrightarrow A \cdot A+2 A \cdot B+B \cdot B=A \cdot A-2 A \cdot B+B \cdot B \\
& \Longleftrightarrow 4 A \cdot B=0 \\
& \Longleftrightarrow A \cdot B=0 .
\end{aligned}
$$

Suppose again that we have two nonzero vectors A and B in the plane, located at the origin. If we move along the line through $\overrightarrow{O B}$, there will be some point P on this line such that $\overrightarrow{P A}$ is perpendicular to $\overrightarrow{O B}$. Then $P=c B$ for some number c. Then we have $(A-P) \cdot B=(A-c B) \cdot B=0$, which is to say

$$
A \cdot B-c B \cdot B=0
$$

so that

$$
c=\frac{A \cdot B}{B \cdot B}
$$

Conversely, we see that

$$
\left(A-\frac{A \cdot B}{B \cdot B} B\right) \cdot B=A \cdot B-A \cdot B=0
$$

Thus, this is the unique number c that makes $A-c B$ perpendicular to B. This number c
is called the component of A along B. If we do a little plane geometry, we see that

$$
\cos \theta=\frac{c\|B\|}{\|A\|}
$$

which can be rewritten as

$$
\|A\|\|B\| \cos \theta=A \cdot B
$$

The projection of A onto B is

$$
\frac{A \cdot B}{B \cdot B} B
$$

Note that if $D=c B$, then

$$
\begin{aligned}
\frac{A \cdot D}{D \cdot D} D & =\frac{A \cdot c B}{c B \cdot c B} c B \\
& =\frac{A \cdot B}{B \cdot B} B
\end{aligned}
$$

so the projection of A onto B doesn't strictly depend on B; projecting onto any multiple of B will yield the same vector (the component, however, does up to a sign).

Note also that if B is a unit vector, the component simplifies to $A \cdot B$, and the projection of A onto B simplifies to $(A \cdot B) B$.

Parametric Lines

Given a direction vector A and a point P, the parametric line in the direction of A passing through P is given by

$$
X(t)=P+t A
$$

where t ranges in \mathbb{R}. One can think of this as the position X of a particle or bug as it travels with the passing of time $t . X(t)$ is sometimes called the position vector of the particle/bug. The position vector is a vector located at the origin, terminating at the position of the bug. The figure below illustrates how the parametrization works: we start P, and as t varies, we shift P by a multiple of A. As t ranges over all of \mathbb{R}, this traces out a line.

Given two points P and Q, we can parametrize the line segment between them as

$$
X(t)=P+t(Q-P), 0 \leq t \leq 1
$$

Planes

A plane M in \mathbb{R}^{3} is determined by two pieces of data: a point P lying on the plane, and a vector N perpendicular to the plane. If we walk from P to some other point X also on the plane, we must have that $X-P$ is perpendicular to N, otherwise X won't lie on the plane M. So the plane is the set of points X satisfying

$$
N \cdot(X-P)=0
$$

Note that this gives a nice interpretation of the equation for a line in the plane $a x+b y=c$. (a, b) is a normal vector to the line! If $c=0$, the equation becomes $(a, b) \cdot(x, y)=0$, so we have a line through the origin, consisting of all vectors (located at the origin) perpendicular to (a, b). Changing the value of c yields a family of parallel lines.

Suppose that we have a plane passing through P and perpendicular to N, and let Q be some point not on the plane. How can we compute the (smallest) distance of Q to the plane? The smallest distance corresponds to the length of the segment formed by drawing a perpendicular to the plane from the point Q. We can obtain this length by projecting $Q-P$ onto N and taking the norm:

$$
\text { length }=\left|(Q-P) \cdot \frac{N}{\|N\|}\right|
$$

The Cross Product

If $A=\left(a_{1}, a_{2}, a_{3}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}\right)$ are vectors in \mathbb{R}^{3}, their cross product $A \times B$ is the determinant

$$
\left|\begin{array}{ccc}
E_{1} & E_{2} & E_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

This is really more of memonic device than an actual definition, since the determinant is defined only for matrices with numerical entries.
$A \times B$ is perpendicular to both A and B. We also have anticommutativity, meaning $B \times A=-(A \times B)$.

One can verify that $\|A \times B\|^{2}=\|A\|^{2}\|B\|^{2}-(A \cdot B)^{2}$.
Using our geometric formula for the dot product, we have

$$
\begin{aligned}
\|A \times B\|^{2} & =\|A\|^{2}\|B\|^{2}-\|A\|^{2}\|B\|^{2} \cos ^{2}(\theta) \\
& =\|A\|^{2}\|B\|^{2}\left(1-\cos ^{2}(\theta)\right) \\
& =\|A\|^{2}\|B\|^{2} \sin ^{2}(\theta)
\end{aligned}
$$

Taking square roots, we have

$$
\|A \times B\|=\|A\|\|B\||\sin (\theta)|
$$

So the magnitude of the cross product is the area of parallelogram spanned by A and B.

