Points in 2-space, 3-space, and Beyond

In the same way that we can specify a point in the plane with two numbers, we can specify
a point in space with three numbers (z,y, z). In general, in n-space (R™), we can specify a
point with a list of n numbers (z1,...,z,).
Given two points in R?, we can define addition on them by adding corresponding coor-
dinates:
(a1,a2,a3) + (by,b2,b3) := (a1 + b1, as + be, ag + b3).

In general,
(al,...,an) +(b1,,bn) = ((11 +b1,...,an+bn).

Example. Let A = (2,3), B = (—1,1). Then A+ B = (1,4). The figure looks like a
parallelogram.

Example. Let A = (3,1), B=(1,2). Then A+ B = (4,3). We obtain a parallelogram
again. This is always the case. Starting from the origin O = (0,0), we obtain B by moving
1 unit right and then 2 units up. We get A + B by first moving 3 to the right, then 1 up,
and then repeating the same movement we did from the origin to B. In other words, the
segment connecting O to B and the one connecting A to A+ B are equal length and parallel.
Similarly, the segments from O to A and B to B+ A = A+ B will also be equal length and
parallel.

We have some not-so-surprising properties of point addition

e (A+B)+C=A+(B+0C)
e A+B=B+A
e O+A=A+0=A

e A+(—-A)=0

where O = (0,...,0) and —A = (—aq,...,—a,). We note that A — —A corresponds to
reflection about the origin.
We can also multiply (or scale) a point A = (ay,...,a,) by a number ¢, yielding a point
cA = (ca,...,cap).

For example, if A = (2,—1,5) and ¢ =7, then cA = (14, —7,35). We again have some easy

properties:
e ¢c(A+B)=cA+cB
o (1 +)A=c1A+ A
o (c102)A = c1(c2A4).

We should comment on the geometric meaning of scaling by a number c¢. Let A = (1,2)
and ¢ = 3. Then cA = (3,6). We see that the effect of multiplying by 3 is to stretch the
point A away from the origin by a factor of 3. If we set ¢ = 1/2, this shrinks A in towards
the origin. If we draw a segment from the origin to A, in the former case, scaling by ¢ = 3
multiplies the length by 3, and scaling by ¢ = 1/2 cuts the length in half.



Vectors

The discussion above leads us naturally to vectors. Given two points A and B, we can
define a located vector as an ordered pair of points (A, B), which is more often written
/@. We think of this as an arrow connecting A and B, pointing towards B. Two located
vectors 1@ and Cﬁ are said to be equivalent if B— A = D — C. We always have that zﬁ
is equivalent to O(B — A). This is actually the unique vector starting at the origin that is
equivalent to AB.

AB and ]@ are said to be parallel if for some ¢ # 0, we have A — B = ¢(Q — P). If
¢ > 0 we say the vectors have the same direction, and if ¢ < 0, we say they have the opposite
direction.

E and 1@ are said to be perpendicular if B — A and Q — P are perpendicular in the
usual geometric sense.

A located vector starting from the origin is completely determined by its endpoint. So an

n-tuple will be called either a point or a vector depending on the context and interpretation.

The Dot Product

If = (x1,22,...,2,) and § = (y1,Y2,...,Yn), their dot product is

—

T-y=xy1 +Toy2 + -+ TpYn-

Note

Some useful properties are

1. A-B=B-A

2. A-(B+C)=A-B+A-C=(B+(C)-A

3. If x is a number, (zA)- B=xz(A-B), A- (zB) =x(A- B)
4. If A= 0, then A- A =0. Otherwise, A- A > 0.

Two vectors A and B are said to be perpendicular or orthogonal if A-B = 0. For the
plane and R3, we will see that this definition agrees with our previous and more geometric
definition of perpendicular.

The norm or magnitude (or length) ||A|| of a vector A = (aq,...,a,) is

1Al =vVA-A=y/ai+ - +ai.

Note that ||—A| = ||A||. More generally, for any number ¢, we have ||cA| = |¢|||A]|. For
two points A, B, the distance between them is

IA- Bl =V(A-B)-(A-B).

A vector E is a unit vector if ||[F|| = 1. Dividing a nonzero vector by its norm always

yields a unit vector, since
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Two nonzero vectors A and B have the same direction if there is some ¢ > 0 such that

cA = B. So, for instance, A/||A]| is a unit vector in the same direction as A.

Perpendicularity, Angle Between Vectors

We have two notions of “perpendicular” floating around. One says A and B are perpendic-
ular if A- B = 0. The other is the more familiar notion of A and B forming a right angle.
Suppose that A and B lie in the plane. We can convince ourselves that A and B form a

right angle precisely when
A= B| =[A+ B

@) (b)

If we accept this, then the equivalence of our two definitions of perpendicularity will

follow from
|A+B||=||A-BJ| < A-B=0.

To prove this, observe that
2 2
A+ B||=[|A-B|| < [[A+B|"=[A-B|
«— A-A+2A-B+B-B=A-A-2A-B+B-B

<~ 4A-B=0
<~ A-B=0.

Suppose again that we have two nonzero vectors A and B in the plane, located at the
origin. If we move along the line through O?, there will be some point P on this line
such that P_1>4 is perpendicular to O? . Then P = ¢B for some number c¢. Then we have
(A—P)-B=(A—cB)-B =0, which is to say

A-B—c¢B-B=0,

so that

Conversely, we see that

A-B
(A—BBB>~B—A~B—A-B—O.

Thus, this is the unique number ¢ that makes A — ¢B perpendicular to B. This number ¢



is called the component of A along B. If we do a little plane geometry, we see that
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which can be rewritten as
Al B]| cos® = A - B.

The projection of A onto B is

A-B
——B.
B-B
Note that if D = ¢B, then
A-D A-cB
D 0°~ B8P
A-B
-2"p
B-B’

so the projection of A onto B doesn’t strictly depend on B; projecting onto any multiple of
B will yield the same vector (the component, however, does up to a sign).

Note also that if B is a unit vector, the component simplifies to A - B, and the projection
of A onto B simplifies to (A - B)B.

Parametric Lines

Given a direction vector A and a point P, the parametric line in the direction of A passing
through P is given by
X(t) =P +tA,

where ¢ ranges in R. One can think of this as the position X of a particle or bug as it travels
with the passing of time ¢. X (t) is sometimes called the position vector of the particle/bug.
The position vector is a vector located at the origin, terminating at the position of the bug.
The figure below illustrates how the parametrization works: we start P, and as ¢ varies, we

shift P by a multiple of A. As t ranges over all of R, this traces out a line.

P+tA

Given two points P and @, we can parametrize the line segment between them as

X(t)=P+t(Q—-P), 0<t<1.



Planes

A plane M in R3? is determined by two pieces of data: a point P lying on the plane, and a
vector N perpendicular to the plane. If we walk from P to some other point X also on the
plane, we must have that X — P is perpendicular to NV, otherwise X won’t lie on the plane
M. So the plane is the set of points X satisfying

N-(X—-P)=0.

P+N

N

Note that this gives a nice interpretation of the equation for a line in the plane az+by = c.
(a,b) is a normal vector to the line! If ¢ = 0, the equation becomes (a,b) - (x,y) = 0, so we
have a line through the origin, consisting of all vectors (located at the origin) perpendicular
to (a,b). Changing the value of ¢ yields a family of parallel lines.

Suppose that we have a plane passing through P and perpendicular to IV, and let @
be some point not on the plane. How can we compute the (smallest) distance of @ to the
plane? The smallest distance corresponds to the length of the segment formed by drawing
a perpendicular to the plane from the point ). We can obtain this length by projecting
@ — P onto N and taking the norm:

N



The Cross Product

If A= (a1,as,a3) and B = (by, by, b3) are vectors in R3, their cross product A x B is the
determinant

E, By Es
ay a9 as | -
bp by b3

This is really more of mnemonic device than an actual definition, since the determinant
is defined only for matrices with numerical entries.

A x B is perpendicular to both A and B. We also have anticommutativity, meaning
Bx A=—(Ax B).

One can verify that ||A x B||* = ||A|?||B||> — (A - B)2.

Using our geometric formula for the dot product, we have

14 % BI* = [|A|*|BI* = | A|I*| B]|* cos™(0)
= AP IBII*(1 — cos*(6))
= A% B]” sin® (6).

Taking square roots, we have

A< B[ = [|A][[| B[||sin(6)|

So the magnitude of the cross product is the area of parallelogram spanned by A and B.

[1B]l sin 6]

—



