
Points in 2-space, 3-space, and Beyond

In the same way that we can specify a point in the plane with two numbers, we can specify

a point in space with three numbers (x, y, z). In general, in n-space (Rn), we can specify a

point with a list of n numbers (x1, . . . , xn).

Given two points in R3, we can define addition on them by adding corresponding coor-

dinates:

(a1, a2, a3) + (b1, b2, b3) := (a1 + b1, a2 + b2, a3 + b3).

In general,

(a1, . . . , an) + (b1, . . . , bn) := (a1 + b1, . . . , an + bn).

Example. Let A = (2, 3), B = (−1, 1). Then A + B = (1, 4). The figure looks like a

parallelogram.

Example. Let A = (3, 1), B = (1, 2). Then A+B = (4, 3). We obtain a parallelogram

again. This is always the case. Starting from the origin O = (0, 0), we obtain B by moving

1 unit right and then 2 units up. We get A + B by first moving 3 to the right, then 1 up,

and then repeating the same movement we did from the origin to B. In other words, the

segment connecting O to B and the one connecting A to A+B are equal length and parallel.

Similarly, the segments from O to A and B to B+A = A+B will also be equal length and

parallel.

We have some not-so-surprising properties of point addition

• (A+B) + C = A+ (B + C)

• A+B = B +A

• O +A = A+O = A

• A+ (−A) = O

where O = (0, . . . , 0) and −A = (−a1, . . . ,−an). We note that A 7→ −A corresponds to

reflection about the origin.

We can also multiply (or scale) a point A = (a1, . . . , an) by a number c, yielding a point

cA = (ca1, . . . , can).

For example, if A = (2,−1, 5) and c = 7, then cA = (14,−7, 35). We again have some easy

properties:

• c(A+B) = cA+ cB

• (c1 + c2)A = c1A+ c2A

• (c1c2)A = c1(c2A).

We should comment on the geometric meaning of scaling by a number c. Let A = (1, 2)

and c = 3. Then cA = (3, 6). We see that the effect of multiplying by 3 is to stretch the

point A away from the origin by a factor of 3. If we set c = 1/2, this shrinks A in towards

the origin. If we draw a segment from the origin to A, in the former case, scaling by c = 3

multiplies the length by 3, and scaling by c = 1/2 cuts the length in half.
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Vectors

The discussion above leads us naturally to vectors. Given two points A and B, we can

define a located vector as an ordered pair of points (A,B), which is more often written
−−→
AB. We think of this as an arrow connecting A and B, pointing towards B. Two located

vectors
−−→
AB and

−−→
CD are said to be equivalent if B−A = D−C. We always have that

−−→
AB

is equivalent to
−−−−−−−→
O(B −A). This is actually the unique vector starting at the origin that is

equivalent to
−−→
AB.

−−→
AB and

−−→
PQ are said to be parallel if for some c ̸= 0, we have A − B = c(Q − P ). If

c > 0 we say the vectors have the same direction, and if c < 0, we say they have the opposite

direction.
−−→
AB and

−−→
PQ are said to be perpendicular if B−A and Q−P are perpendicular in the

usual geometric sense.

A located vector starting from the origin is completely determined by its endpoint. So an

n-tuple will be called either a point or a vector depending on the context and interpretation.

The Dot Product

If x⃗ = (x1, x2, . . . , xn) and y⃗ = (y1, y2, . . . , yn), their dot product is

x⃗ · y⃗ = x1y1 + x2y2 + · · ·+ xnyn.

Note

Some useful properties are

1. A ·B = B ·A

2. A · (B + C) = A ·B +A · C = (B + C) ·A

3. If x is a number, (xA) ·B = x(A ·B), A · (xB) = x(A ·B)

4. If A = O, then A ·A = 0. Otherwise, A ·A > 0.

Two vectors A and B are said to be perpendicular or orthogonal if A ·B = 0. For the

plane and R3, we will see that this definition agrees with our previous and more geometric

definition of perpendicular.

The norm or magnitude (or length) ∥A∥ of a vector A = (a1, . . . , an) is

∥A∥ =
√
A ·A =

√
a21 + · · ·+ a2n.

Note that ∥−A∥ = ∥A∥. More generally, for any number c, we have ∥cA∥ = |c|∥A∥. For
two points A,B, the distance between them is

∥A−B∥ =
√

(A−B) · (A−B).

A vector E is a unit vector if ∥E∥ = 1. Dividing a nonzero vector by its norm always

yields a unit vector, since ∥∥∥∥ A

∥A∥

∥∥∥∥ =
1

∥A∥
∥A∥ = 1.
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Two nonzero vectors A and B have the same direction if there is some c > 0 such that

cA = B. So, for instance, A/∥A∥ is a unit vector in the same direction as A.

Perpendicularity, Angle Between Vectors

We have two notions of “perpendicular” floating around. One says A and B are perpendic-

ular if A · B = 0. The other is the more familiar notion of A and B forming a right angle.

Suppose that A and B lie in the plane. We can convince ourselves that A and B form a

right angle precisely when

∥A−B∥ = ∥A+B∥.

If we accept this, then the equivalence of our two definitions of perpendicularity will

follow from

∥A+B∥ = ∥A−B∥ ⇐⇒ A ·B = 0.

To prove this, observe that

∥A+B∥ = ∥A−B∥ ⇐⇒ ∥A+B∥2 = ∥A−B∥2

⇐⇒ A ·A+ 2A ·B +B ·B = A ·A− 2A ·B +B ·B

⇐⇒ 4A ·B = 0

⇐⇒ A ·B = 0.

Suppose again that we have two nonzero vectors A and B in the plane, located at the

origin. If we move along the line through
−−→
OB, there will be some point P on this line

such that
−→
PA is perpendicular to

−−→
OB. Then P = cB for some number c. Then we have

(A− P ) ·B = (A− cB) ·B = 0, which is to say

A ·B − cB ·B = 0,

so that

c =
A ·B
B ·B

.

Conversely, we see that(
A− A ·B

B ·B
B

)
·B = A ·B −A ·B = 0.

Thus, this is the unique number c that makes A − cB perpendicular to B. This number c
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is called the component of A along B. If we do a little plane geometry, we see that

cos θ =
c∥B∥
∥A∥

,

which can be rewritten as

∥A∥∥B∥ cos θ = A ·B.

The projection of A onto B is
A ·B
B ·B

B.

Note that if D = cB, then

A ·D
D ·D

D =
A · cB
cB · cB

cB

=
A ·B
B ·B

B,

so the projection of A onto B doesn’t strictly depend on B; projecting onto any multiple of

B will yield the same vector (the component, however, does up to a sign).

Note also that if B is a unit vector, the component simplifies to A ·B, and the projection

of A onto B simplifies to (A ·B)B.

Parametric Lines

Given a direction vector A and a point P , the parametric line in the direction of A passing

through P is given by

X(t) = P + tA,

where t ranges in R. One can think of this as the position X of a particle or bug as it travels

with the passing of time t. X(t) is sometimes called the position vector of the particle/bug.

The position vector is a vector located at the origin, terminating at the position of the bug.

The figure below illustrates how the parametrization works: we start P , and as t varies, we

shift P by a multiple of A. As t ranges over all of R, this traces out a line.

Given two points P and Q, we can parametrize the line segment between them as

X(t) = P + t(Q− P ), 0 ≤ t ≤ 1.
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Planes

A plane M in R3 is determined by two pieces of data: a point P lying on the plane, and a

vector N perpendicular to the plane. If we walk from P to some other point X also on the

plane, we must have that X − P is perpendicular to N , otherwise X won’t lie on the plane

M . So the plane is the set of points X satisfying

N · (X − P ) = 0.

Note that this gives a nice interpretation of the equation for a line in the plane ax+by = c.

(a, b) is a normal vector to the line! If c = 0, the equation becomes (a, b) · (x, y) = 0, so we

have a line through the origin, consisting of all vectors (located at the origin) perpendicular

to (a, b). Changing the value of c yields a family of parallel lines.

Suppose that we have a plane passing through P and perpendicular to N , and let Q

be some point not on the plane. How can we compute the (smallest) distance of Q to the

plane? The smallest distance corresponds to the length of the segment formed by drawing

a perpendicular to the plane from the point Q. We can obtain this length by projecting

Q− P onto N and taking the norm:

length =

∣∣∣∣(Q− P ) · N

∥N∥

∣∣∣∣
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The Cross Product

If A = (a1, a2, a3) and B = (b1, b2, b3) are vectors in R3, their cross product A × B is the

determinant ∣∣∣∣∣∣∣
E1 E2 E3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ .
This is really more of mnemonic device than an actual definition, since the determinant

is defined only for matrices with numerical entries.

A × B is perpendicular to both A and B. We also have anticommutativity, meaning

B ×A = −(A×B).

One can verify that ∥A×B∥2 = ∥A∥2∥B∥2 − (A ·B)2.

Using our geometric formula for the dot product, we have

∥A×B∥2 = ∥A∥2∥B∥2 − ∥A∥2∥B∥2 cos2(θ)

= ∥A∥2∥B∥2(1− cos2(θ))

= ∥A∥2∥B∥2 sin2(θ).

Taking square roots, we have

∥A×B∥ = ∥A∥∥B∥| sin(θ)|.

So the magnitude of the cross product is the area of parallelogram spanned by A and B.
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