HW 1

Exercise 1. Let $A=(1,2), B=(3,1)$. Draw the points $A+B, A+2 B, A+3 B, A-B$, $A-2 B$, and $A-3 B$ on a sheet of graph paper (or a reasonably drawn set of axes).

Exercise 2. Which of the following pairs of vectors are perpendicular?

- $(1,-1,1),(2,1,5)$
- $(1,-1,1),(2,3,1)$
- $(-5,2,7),(3,-1,2)$
- $(\pi, 2,1),(2,-\pi, 0)$

Exercise 3. Suppose $A=\left(a_{1}, a_{2}, a_{3}\right)$ is perpendicular to every vector X. Show that A is the zero vector. (Hint: if this holds for every X, it holds in particular for E_{1}, E_{2}, and E_{3})

Exercise 4. Determine the interior angles of the triangle whose vertices are $(2,-1,1)$, $(1,-3,-5)$, and $(3,-4,-4)$. (Hint: label the points as P, Q, and R. Then, for instance, one of the angles can be found by computing the angle between the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$. Then you can do this for the other angles.)

Exercise 5. Let A_{1}, \ldots, A_{r} be nonzero vectors which are mutually perpendicular (i.e. $A_{i} \cdot A_{j}=0$ whenever $i \neq j$). Suppose c_{1}, \ldots, c_{r} are numbers such that

$$
c_{1} A_{1}+\cdots+c_{r} A_{r}=0
$$

Show that we must have $c_{i}=0$ for each $i=1, \ldots, r$.
Exercise 6. Let $P=(1,3,-1)$ and $Q=(-4,5,2)$. Determine the coordinates of the following points

- The midpoint of the line segment between P and Q
- The point on this line segment that is two thirds of the way from P to Q.

Exercise 7. Find the equation of the plane passing through the points $(2,1,1),(3,-1,1)$, and $(4,1,-1)$. (Hint: to obtain a normal vector to this plane, label the points P, Q, and R and form the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$. What is true of $\overrightarrow{P Q} \times \overrightarrow{P R}$?)

Exercise 8. Find a parametric representation for the line of intersection of the planes

$$
\begin{aligned}
& 2 x+y+5 z=2 \\
& 3 x-2 y+z=3
\end{aligned}
$$

(Hint: notice that when two planes intersect, the line of intersection is perpendicular to the normal vectors of both planes. It might help to sketch a picture.)

Exercise 9. Compute the area of the parallelogram spanned by the vectors (3, $-2,4$) and $(5,1,1)$.

