HW 3

Exercise 1. Sketch the level curves for the following functions (just pick a few values for f).

- f(x,y) = xy.
- f(x,y) = (x-1)(y-2) (think of the relation this has with the previous function).
- f(x,y) = 2x 3y.

Exercise 2. Find the partial derivatives $\partial f/\partial x$, $\partial f/\partial y$, and $\partial f/\partial z$ (where it applies) for the following functions.

- $f(x, y, z) = e^{xyz}$.
- $f(x, y, z) = \sin(xy) + \cos(z).$

Exercise 3. Find the gradient of $f(x, y, z) = e^{3x+y} \sin(5z)$ at $(0, 0, \pi/6)$.

Exercise 4. Let $A = (a_1, a_2, a_3)$ and let f be the function on \mathbb{R}^3 defined by $f(X) = A \cdot X$ (since we're in \mathbb{R}^3 , one can write X = (x, y, z)). What is grad f?

Exercise 5. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be defined on an open set U. Let $X \in U$. Suppose that we have a vector A and a function g(H) defined for all H in a neighborhood of O (i.e. for small H) such that

$$f(X + H) - f(X) = A \cdot H + ||H||g(H).$$

Show that $A = \operatorname{grad} f$. (Hint: use special values of H, such hE_i , where $h \in \mathbb{R}$ is small and E_i is the *i*-th standard basis vector.) (Note: the point of this exercise is to show that you actually don't need to assume that the partial derivatives exist in the definition of differentiability; the above condition already ensures they exist, and that they in fact form the components of this vector A.)

Exercise 6. Let $f(x,y) = e^{9x+2y}$ and $g(x,y) = \sin(4x+y)$. Suppose C(t) is a differentiable curve with C(0) = (0,0). Given:

$$\frac{d}{dt}f(C(t))\Big|_{t=0} = 2, \ \frac{d}{dt}g(C(t))\Big|_{t=0} = 1.$$

Find C'(0). (This problem is essentially saying the following: if f and g are appropriately chosen functions, and I tell you how the values of f and g are changing as C(t) goes through a point at time t, then you work out the direction C(t) is headed at time t.)