HW 4

Exercise 1. Find the equation of the tangent plane and normal line to each of the following surfaces at the specific point.

- $x y+y z+z x-1=0$ at $(1,1,0)$.
- $\sin (x y)+\sin (y z)+\sin (x z)$ at $(1, \pi / 2,0)$.
- $x=e^{2 y-z}$ at $(1,1,2)$.

Exercise 2. (a) A differentiable curve $C(t)$ lies on the surface

$$
x^{2}+4 y^{2}+9 z^{2}=14
$$

and is parametrized so that $C(0)=(1,1,1)$. Let

$$
f(x, y, z)=x^{2}+4 y^{2}+9 z^{2}
$$

and let $h(t)=f(C(t))$. Find $h^{\prime}(0)$.
(b) Let $g(x, y, z)=x^{2}+y^{2}+z^{2}$ and let $k(t)=g(C(t))$. Suppose also that $C^{\prime}(0)=$ $(4,-1,0)$. Find $k^{\prime}(0)$.

Exercise 3. Let $f(x, y, z)=z-e^{x} \sin (y)$ and $P=(\ln (3), 3 \pi / 2,-3)$. Find:

- the directional derivative of f at P in the direction of $(1,2,2)$.
- the maximum and minimum values for the directional derivative of f at P (i.e. considering all possible directions).

Exercise 4. Find the critical points of the function

$$
x^{2}+4 x y-y^{2}-8 x-6 y
$$

Exercise 5. Find the global maxima and minima of the function $x y-\left(1-x^{2}-y^{2}\right)^{1 / 2}$ in the region $x^{2}+y^{2} \leq 1$. (Naturally, you'll first find the critical points in the interior of the disk. For the boundary (which is a circle), you can either parametrize the circle as $X(t)$ and then min/max $f(X(t))$, or one could also use Lagrange multipliers.)

Exercise 6. Find the points on the surface $z^{2}-x y=1$ closest to the origin. (Suggestion: you'll be optimizing a distance; it will probably be easier to optimize the square of the distance. Nothing is lost by doing this, as a point being a minimum for the distance squared is the same as being a minimum for the distance itself.)

