HW 5

Exercise 1. Find the terms up to order 2 in the Taylor formula of the following functions $($ taking $\mathrm{P}=(0,0))$.

- $\sin (x y)$
- $\sin (x) \cos (y)$

Exercise 2. Find the terms up to order 2 in the Taylor formula of $\cos \left(x^{2}+y\right)$ at $P=(0, \pi)$.

Exercise 3. Show that $f(x, y)=a x^{2}+b x y+c y^{2}$ has the origin $(0,0)$ as a critical point.
Exercise 4. Determine whether the following quadratic forms have a maximum, minimum, or saddle at the origin.

- $3 x^{2}-4 x y+y^{2}$
- $x^{2}+3 x y+4 y^{2}$
- $-x^{2}+2 x y-y^{2}$

Exercise 5. Find the critical points of $f(x, y)=y e^{-\left(x^{2}+y^{2}\right)}$ and for each one, determine whether the point is a local min, max, or saddle.

Exericse 6. Use the single variable power series

$$
\sin (x)=x-x^{3} / 3!+\cdots
$$

and

$$
e^{x}=1+x+x^{2} / 2+\cdots
$$

to find the terms up to order 2 in the Taylor formula at $P=(0,0)$ of

- $\sin (x y)$
- e^{x+y}

