HW 6.

Exercise 1. Let $F(X) = r^n X$, where r = ||X||, the distance to the origin. Find a potential function for F. (Hint: recall that for a function f = g(r), the gradient is

grad
$$f(X) = \frac{g'(r)}{r} X.)$$

Exercise 2. Let $r = \sqrt{x^2 + y^2}$. Compute the integral of

$$F = \frac{1}{r}X$$

around the circle of radius 2 centered at the origin, going counterclockwise.

Exercise 3. Let

$$G(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

Compute the integral of G along the following curves:

- $x^2 + y^2 = 2$ from (1, 1) to $(-\sqrt{2}, 0)$.
- Counterclockwise around the entire circle $x^2 + y^2 = r^2$ where r is some fixed radius.

Exercise 4. Integrate the field $F = (x^2y^2, xy^2)$ counterclockwise around the closed path formed by the parts of the line x = 1 and the parabola $x = y^2$.

Exercise 5. Let $r = \sqrt{x^2 + y^2}$ and

$$F(x,y) = \left(\frac{x}{r^3}, \frac{y}{r^3}\right).$$

Find the integral of F along $C(t) = (e^t \cos t, e^t \sin t)$ from (1,0) to $(e^{2\pi}, 0)$. (Hint: do you really want to evaluate this directly?)

Exercise 6. Find potentials for the following vector fields.

- $(y\sin(z), x\sin(z), xy\cos(z))$
- $(z^2, 2y, 2xz)$