HW 6.

Exercise 1. Let $F(X)=r^{n} X$, where $r=\|X\|$, the distance to the origin. Find a potential function for F. (Hint: recall that for a function $f=g(r)$, the gradient is

$$
\left.\operatorname{grad} f(X)=\frac{g^{\prime}(r)}{r} X .\right)
$$

Exercise 2. Let $r=\sqrt{x^{2}+y^{2}}$. Compute the integral of

$$
F=\frac{1}{r} X
$$

around the circle of radius 2 centered at the origin, going counterclockwise.
Exercise 3. Let

$$
G(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right) .
$$

Compute the integral of G along the following curves:

- $x^{2}+y^{2}=2$ from $(1,1)$ to $(-\sqrt{2}, 0)$.
- Counterclockwise around the entire circle $x^{2}+y^{2}=r^{2}$ where r is some fixed radius.

Exercise 4. Integrate the field $F=\left(x^{2} y^{2}, x y^{2}\right)$ counterclockwise around the closed path formed by the parts of the line $x=1$ and the parabola $x=y^{2}$.

Exercise 5. Let $r=\sqrt{x^{2}+y^{2}}$ and

$$
F(x, y)=\left(\frac{x}{r^{3}}, \frac{y}{r^{3}}\right) .
$$

Find the integral of F along $C(t)=\left(e^{t} \cos t, e^{t} \sin t\right)$ from $(1,0)$ to $\left(e^{2 \pi}, 0\right)$. (Hint: do you really want to evaluate this directly?)

Exercise 6. Find potentials for the following vector fields.

- $(y \sin (z), x \sin (z), x y \cos (z))$
- $\left(z^{2}, 2 y, 2 x z\right)$

