HW 7.

Exercise 1. Evaluate the following repeated integrals.

$$
\int_{0}^{\pi} \int_{0}^{\sin (x)} y d y d x
$$

-

$$
\int_{0}^{1} \int_{y^{2}}^{y} \sqrt{x} d x d y
$$

Exercise 2. Sketch the regions

$$
R_{1}=\left\{(x, y) \in \mathbb{R}^{2}:|x| \leq 1,-1 \leq y \leq 2\right\}
$$

-

$$
R_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x+y \leq 1, x \geq 0, y \geq 0\right\}
$$

-

$$
R_{3}=\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \leq 1\right\}
$$

Note that

$$
|x|=\left\{\begin{array}{l}
x \text { if } x \geq 0 \\
-x \text { if } x<0
\end{array}\right.
$$

so for the last one, it may help to consider what happens when $x \geq 0, y \geq 0$, then what happens when $x \geq 0, y \leq 0$, etc.

Exercise 3. Compute the integral

$$
\iint_{R} x \cos (x+y) d A
$$

where R is the inside of the triangle whose vertices are $(0,0),(\pi, 0),(\pi, \pi)$.
Exercise 4. Compute the integral

$$
\iint_{R}\left(x^{2}-y^{2}\right) d A
$$

where R is the region defined by $0 \leq x \leq 1, x^{2}-y^{2} \geq 0$.
Exercise 5. Integrate $e^{-\left(x^{2}+y^{2}\right)}$ over the disk bounded by the circle $x^{2}+y^{2}=a^{2}$, where $a>0$.

Exercise 6. Let $a>0$. Evaluate

$$
\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}}\left(x^{2}+y^{2}\right) d x d y
$$

by changing to polar coordinates.
Exercise 7. A cylindrical hole of radius 1 is bored through the center of a sphere of radius 2 . What volume is removed?

