HW 8.

Exercise 1. Use Green's Theorem to compute the integral

$$
\int_{C} y^{2} d x+x d y
$$

where C is

- (a) the square with vertices $(0,0),(0,2),(2,0),(2,2)$, oriented counterclockwise
- (b) the circle of radius 2 centered at the origin, oriented counterclockwise.

Exercise 2. Let A be a region, which is the interior of a closed curve C oriented counterclockwise. Show that the area of A is given by

- $\operatorname{Area}(A)=\frac{1}{2} \int_{C}-y d x+x d y$
- $\operatorname{Area}(A)=\int_{C} x d y$.

Exercise 3. Suppose that f satisfies Laplace's equation

$$
\frac{\partial^{2}}{\partial x^{2}} f+\frac{\partial^{2}}{\partial y^{2}} f=0
$$

everywhere on a region A which is the interior of a counterclockwise curve C. (The above equation could also be expressed as $D_{1}^{2} f+D_{2}^{2} f=0$.) Show that

$$
\int_{C}\left(\frac{\partial f}{\partial y} d x-\frac{\partial f}{\partial x} d y\right)=0
$$

Exercise 4. Let $F=(p, q)$ be a vector field on the plane. Prove the divergence theorem (in two dimensions) by applying Green's theorem to the vector field $G=(-q, p)$.

Exercise 5. Find the volume of the region spanned by the following inequalities:

$$
0 \leq x \leq 1,0 \leq y \leq \sqrt{1-x^{2}}, 0 \leq z \leq \sqrt{1-x^{2}-y^{2}}
$$

Exercise 6. Find the volume of the cone

$$
\sqrt{x^{2}+y^{2}} \leq z \leq 1
$$

via integration in spherical coordinates.
Exercise 7. Compute the integral

$$
\iiint_{A} x^{2} d V
$$

where A is the region inside the cylinder $x^{2}+y^{2} \leq a^{2}$ and between the planes $z=0$ and $z=b$, where $b>0$. (Note that $x^{2}+y^{2} \leq a^{2}$ describes a disk in the plane, but in 3 -space it describes a cylinder since z can vary freely.) (Note: the identity $\cos ^{2} \theta=(1+\cos \theta) / 2$ will likely be useful.)

