

Eigenvalues, eigenvectors

Let $A: V \rightarrow V$ linear.

A scalar λ is called an eigenvalue if there is some $\vec{v} \neq \vec{0}$ s.t.

$$A\vec{v} = \lambda\vec{v}.$$

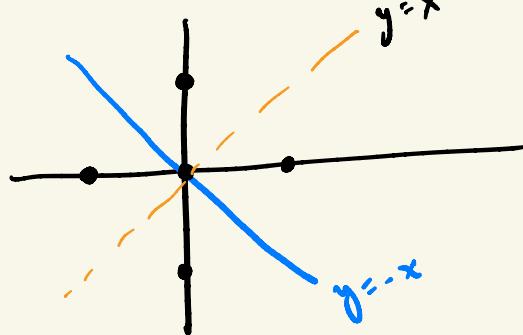
\vec{v} is called an eigenvector.

$$A\vec{v} = \lambda\vec{v} \iff A\vec{v} = \lambda I\vec{v} \quad \begin{matrix} \text{"eigen" = "self"} \\ \text{or "own"} \end{matrix}$$
$$\iff (A - \lambda I)\vec{v} = \vec{0}.$$

Def: $\lambda =$ eigen. $\ker(\lambda - \lambda I)$ is called the eigenspace corresponding to λ .

The set of all eigenvalues of A is called the spectrum of A , denoted $\sigma(A)$.

Ex: reflection about $y = -x$



$$A = \begin{pmatrix} \lambda e_1 & \lambda e_2 \\ 0 & -1 \\ -1 & 0 \end{pmatrix}$$

what vectors are sent to a multiple of themselves? $Av = \lambda v \rightarrow$ eigenvectors are ones s.t. v , Av , and 0 are collinear.

$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector w/ eigenvalue -1

$v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is an eigenvector w/ eigenvalue $+1$

Finding eigenvalues

λ is an eigenvalue if and only if

$\ker(A - \lambda I)$ is nontrivial (i.e.

$(A - \lambda I)\vec{x} = \vec{0}$ has a nonzero sol'n)

Since A is square, $A - \lambda I$ has nontrivial kernel if and only if $A - \lambda I$ is not invertible.
 $\iff \det(A - \lambda I) = 0$.

λ is an eigenvalue $\iff \det(A - \lambda I) = 0$

If $A = n \times n$, then $\det(A - \lambda I)$ is a polynomial of degree n in the variable λ , called the characteristic polynomial.

e.g. $A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

$$A - \lambda I = \begin{pmatrix} -\lambda & -1 \\ -1 & -\lambda \end{pmatrix}$$

$$\det(A - \lambda I) = \lambda^2 - 1$$

$$\lambda^2 - 1 = 0 \iff \lambda = +1 \text{ or } \lambda = -1.$$

So we can find the spectrum of a matrix.
what about a general linear map $T: V \rightarrow V$?

Take an arbitrary basis B , and compute the matrix $[T]_{BB}$, and find its eigenvalues.

Does this depend on the choice of B ? No!

Def. Two $n \times n$ matrices A and B are similar if $A = SBS^{-1}$ for some invertible matrix S .

Note: $\det(\lambda) = \det(S) \det(B) \det(S^{-1})$
 $= \det(B)$, since

$$\det(S^{-1}) = \frac{1}{\det(S)}$$

$$A - \lambda I = SBS^{-1} - \lambda SIS^{-1}$$

$$= S(BS^{-1} - \lambda I S^{-1}) = S(B - \lambda I)S^{-1}$$

$$\Rightarrow \det(A - \lambda I) = \det(B - \lambda I).$$

\Rightarrow similar matrices have the same characteristic polys \rightarrow same eig. vals

$T: V \rightarrow V$. A, B bases for V

$$[T]_{\ell\ell} = [I]_{\ell B} [T]_{BB} [I]_{B\ell}$$

$$[I]_{\ell B} = [I]_{B\ell}^{-1}$$

so $[T]_{\ell\ell}$ and $[I]_{\ell B}$ are similar

Remark: eigenvalues need not be in \mathbb{R}

$$\text{ex. } \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \rightsquigarrow (1-\lambda)^2 + 1$$

$$\lambda^2 - 2\lambda + 2$$

Multiplicity: If p is a polynomial, and λ is a root (i.e. $p(\lambda) = 0$), then

$$p(z) = (z-\lambda)q(z). \quad q \text{ polynomial}$$

If $q(\lambda) = 0$, then q has a factor of $(z-\lambda)$, so $(z-\lambda)^2$ divides p , and so on. The largest pos. int. k s.t. $(z-\lambda)^k$ divides p is called the multiplicity of the root λ .

If λ is an eigenvalue, it is a root of $p(z) = \det(A - \lambda I)$. The multiplicity of this root is called the multiplicity of the eig. val λ .

Any $p(z)$ of degree n has exactly n complex roots (counting multiplicity).

$$p(z) = a_n(z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_n)$$

$\lambda_i \in \mathbb{C}$ & some λ_i 's may be the same.

Rule: $\det A = \sum_{\sigma \in \text{sign}} a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n} \text{sign}(\sigma)$

each term involves selecting n entries, one from each col, can't share rows

The eigenvalues of a triangular matrix are the diagonal entries:

$$A - \lambda I = \begin{pmatrix} a_{1,1} - \lambda & & & & \\ & a_{2,2} - \lambda & & & \\ & & \ddots & & \\ 0 & & & & a_{n,n} - \lambda \end{pmatrix}$$

$$\det(A - \lambda I) = (a_{1,1} - \lambda)(a_{2,2} - \lambda) \cdots (a_{n,n} - \lambda)$$

roots are exactly $a_{i,i}$, $i = 1, \dots, n$

Diagonalization

$T: V \rightarrow V$. Is there a basis \mathcal{B} for which $[T]_{\mathcal{B}\mathcal{B}}$ is diagonal?
Not always.

Suppose $A: V \rightarrow V$ has a basis consisting of eigenvectors $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$

$$A\vec{b}_1 = \lambda_1 \vec{b}_1, \dots, A\vec{b}_n = \lambda_n \vec{b}_n$$

$$[A]_{\mathcal{B}\mathcal{B}} = \begin{pmatrix} b_1 & b_2 & \cdots & b_n \\ b_1 & \lambda_1 & 0 & \cdots \\ b_2 & 0 & \lambda_2 & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ b_n & 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Conversely, if there is a basis for which $[A]_{\mathcal{B}\mathcal{B}}$ is diagonal, then those basis vectors are each eigenvectors.

Thm 2.1 : Let $A \in M_{n \times n}^{\mathbb{F}}$.

Then A can be written $A = SDS^{-1}$, D diagonal, S inv, if and only if there is a basis of \mathbb{F}^n consisting of eigenvectors.

In this case, the diagonal entries of D are the eigenvals and the cols of S are the corresponding eigenvectors.

Pf. (\Rightarrow) Let $D = \text{diag}\{\lambda_1, \dots, \lambda_n\}$, let $\vec{b}_1, \dots, \vec{b}_n$ be the cols of S^{-1} (in particular, this means $\vec{b}_1, \dots, \vec{b}_n$ is a basis).

$$S = [\mathbb{I}]_{\text{standard}, \mathcal{B}} \quad A = SDS^{-1} \Rightarrow D = S^{-1}AS$$

$$D = S^{-1}AS = [\mathbb{I}]_{\mathcal{B}, \text{st}} A [\mathbb{I}]_{\text{st}, \mathcal{B}} = [A]_{\mathcal{B}B}$$

this is to say the cols of S are eigenvectors!

(\Leftarrow) follows from above. \square

Diagonalizing is useful for computing powers of maps/matrices

If $D = \begin{pmatrix} \lambda_1 & & 0 \\ 0 & \ddots & \lambda_n \\ & & \text{N times} \end{pmatrix}$, $D^N = \begin{pmatrix} \lambda_1^N & & 0 \\ 0 & \ddots & \lambda_n^N \\ & & \text{N times} \end{pmatrix}$

$$A = SDS^{-1} \implies A^N = \underbrace{(SDS^{-1})(SDS^{-1}) \cdots (SDS^{-1})}_{= SDS^N}$$

Thm 2.2: Let $\lambda_1, \dots, \lambda_r$ be distinct eigenvalues.

Let $\vec{v}_1, \dots, \vec{v}_r$ be corresponding eigenvectors.

Then $\vec{v}_1, \dots, \vec{v}_r$ are linearly independent.

Aside on Induction:

Suppose $S \subseteq \mathbb{N} = \{0, 1, 2, \dots\}$ s.t.

$0 \in S$, and suppose $n \in S$ implies $n+1 \in S$.

then $S = \mathbb{N}$.

$P(n)$: statement involving the number n .

$$\text{e.g. } P(n) = 0+1+2+\dots+n = \frac{n(n+1)}{2}.$$

Let $S = \{k \in \mathbb{N} : P(k) \text{ is true}\}$

If we show, $0 \in S$, then show

$n \in S \Rightarrow n+1 \in S$. Then $S = \mathbb{N}$
(i.e. $P(n)$ is true for all $n \in \mathbb{N}$).

In our example, $P(0) : 0 = \frac{0(1)}{2}$, so $0 \in S$.

Suppose $P(n)$ is true for some n .

$$1 + \dots + n = \frac{n(n+1)}{2}.$$

$$\begin{aligned} \text{Then } & [1 + \dots + n] + n+1 \\ &= \left[\frac{n(n+1)}{2} \right] + n+1 = \frac{n(n+1)}{2} + \frac{2n+2}{2} \\ &= \frac{n^2 + 3n + 2}{2} = \frac{(n+2)(n+1)}{2}. \end{aligned}$$

so $P(n+1)$ is true, provided $P(n)$ holds.

so $0 \in S$, $n \in S \Rightarrow n+1 \in S \Rightarrow S = \mathbb{N}$.

PF of 2.2: If $r=1$, then the statement holds.

Suppose the theorem statement is true for $r-1$.

Let $\lambda_1, \dots, \lambda_r$ be distinct eigenvalues with $\vec{v}_1, \dots, \vec{v}_r$ the corresponding eigenvectors.

$$c_1 \vec{v}_1 + \dots + c_r \vec{v}_r = \vec{0} \quad (*)$$

Apply $A - \lambda_r I$ to both sides

$$c_1 (A - \lambda_r I) \vec{v}_1 + \dots + c_{r-1} (A - \lambda_r I) \vec{v}_{r-1} = \vec{0}$$

$$\Rightarrow c_1 \underbrace{(\lambda_1 - \lambda_r) \vec{v}_1}_{\neq 0} + \dots + c_{r-1} \underbrace{(\lambda_{r-1} - \lambda_r) \vec{v}_{r-1}}_{\neq 0} = \vec{0}$$

$$\rightarrow c_1 = \dots = c_{r-1} = 0.$$

so $(*)$ becomes $c_r \vec{v}_r = \vec{0} \Rightarrow c_r = 0$ since $\vec{v}_r \neq \vec{0}$.

□

Corollary: If $A: V \rightarrow V$ has $\dim V$ distinct eigenvalues,

then it is diagonalizable.

PF: A would then have n linearly independent eigenvectors. An \mathbb{I} list of length $\dim V$ is a basis. □

Bases of subspaces (Direct sums)

Let V_1, V_2, \dots, V_p be subspaces of V .

We say V_1, \dots, V_p is a basis of V if every $\vec{v} \in V$ can be written uniquely as

$$\vec{v} = \vec{v}_1 + \dots + \vec{v}_p, \quad \vec{v}_i \in V_i \quad i=1, \dots, p.$$

Def. V_1, \dots, V_p is linearly indp if

$$\vec{v}_1 + \dots + \vec{v}_p = \vec{0}, \quad \text{each } \vec{v}_i \in V$$

implies $\vec{v}_i = \vec{0} \quad \forall i=1, \dots, p$.

Def. V_1, \dots, V_p is spanning if each $\vec{v} \in V$ can be expressed (not necessarily uniquely)

$$\vec{v} = \vec{v}_1 + \dots + \vec{v}_p, \quad \vec{v}_i \in V_i, \quad i=1, \dots, p.$$

Rank: The system of eigenspaces E_k of A

$$E_k := \ker(A - \lambda_k I)$$

is lin. indp.

Rank: A system of subspaces V_1, \dots, V_p is a basis if and only if it is generating and lin. indp.

Ex. Suppose $\vec{v}_1, \dots, \vec{v}_n$ is a basis for V .

Split the indices $1, 2, \dots, n$ into p

subsets $\Lambda_1, \dots, \Lambda_p$. Let

$$V_k = \text{span} \{ \vec{v}_j : j \in \Lambda_k \}.$$

Then V_1, \dots, V_p is a basis of subspaces for V .

$$\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5, \vec{v}_6$$

$$\Lambda_1 = \{1\} \quad \Lambda_2 = \{2, 5\} \quad \Lambda_3 = \{3, 4, 6\}$$

Prop: A system of eigenspaces corresponding to diff eigenvalues are lin. indp.

Induction on # of eigenspaces:

$$\underbrace{E_1, \dots, E_r, E_{r+1}}_{\text{distinct}} \quad \underbrace{\lambda_1, \dots, \lambda_r, \lambda_{r+1}}$$

Suppose $\vec{v}_1 + \vec{v}_2 + \dots + \vec{v}_r + \vec{v}_{r+1} = \vec{0} \quad \vec{v}_i \in E_i$

$$(A - \lambda_{r+1} I)(\vec{v}_1 + \dots + \vec{v}_r + \vec{v}_{r+1}) = (A - \lambda_{r+1} I)\vec{0}$$

$$(A - \lambda_{r+1} I)\vec{v}_1 + \dots + (A - \lambda_{r+1} I)\vec{v}_r + (A - \lambda_{r+1} I)\vec{v}_{r+1} = \vec{0}$$

$$(\lambda_1 - \lambda_{r+1})\vec{v}_1 + \dots + (\lambda_r - \lambda_{r+1})\vec{v}_r + \cancel{(\lambda_{r+1} - \lambda_{r+1})\vec{v}_{r+1}} = \vec{0}$$

if any \vec{v}_i 's are $\neq \vec{0}$, then there is some linear dependence among \vec{v}_i 's.

So each \vec{v}_i must be $\vec{0}$.

$$\Rightarrow \vec{v}_{r+1} = \vec{0}. \quad \square$$

Thm 2.6 Let V_1, \dots, V_p be a basis of subspaces. Let each V_k have a basis \mathcal{B}_k . Then $\bigcup_k \mathcal{B}_k$ is a basis for V .

Lemma: Let V_1, \dots, V_p be a lin mdp list of subspaces, and suppose \mathcal{B}_k is a lin mdp list of vectors in V_k for each k . Then $\bigcup_k \mathcal{B}_k$ is a lin mdp list in V of vectors.

Pf: Let n be the # of vectors in $\bigcup_k \mathcal{B}_k =: \mathcal{B}$. Order the set \mathcal{B} as follows: first list all vectors in \mathcal{B}_1 , then in \mathcal{B}_2, \dots , then \mathcal{B}_p . \mathcal{B} is a list of n vectors. \mathcal{B} split indices into sets $\Lambda_1, \dots, \Lambda_p$ so that

$$\mathcal{B}_k = \{ \vec{b}_j : j \in \Lambda_k \}$$

Suppose $c_1 \vec{b}_1 + \dots + c_n \vec{b}_n = \vec{0} \quad (1)$.

$$\text{write } \vec{v}_{12} = \sum_{j \in \Lambda_{12}} c_j \vec{b}_j$$

Then (1) becomes

$$\vec{v}_1 + \vec{v}_2 + \dots + \vec{v}_p = \vec{0}.$$

v_1, \dots, v_p lin indp as subspaces

$$\Rightarrow \vec{v}_k = \vec{0}, \quad k = 1, \dots, p.$$

i.e. $\sum_{j \in \Lambda_k} c_j \vec{b}_j = \vec{0}$

$\{b_j : j \in \Lambda_k\}$ are lin indp as vectors

$$\Rightarrow c_j = 0 \quad \forall j \in \Lambda_k.$$

$$\Rightarrow c_1 = c_2 = \dots = c_n = 0. \quad \square$$

Pf of them: only remains to show spanning part. If v_1, \dots, v_p is a basis of subspaces, then each $\vec{v} \in V$ can be written

$$\vec{v} = \vec{v}_1 + \vec{v}_2 + \dots + \vec{v}_p, \quad \vec{v}_k \in V_k \quad k = 1, \dots, p.$$

Since $\{\vec{b}_j : j \in \Lambda_k\}$ is a basis for V_k ,

$$v_k = \sum_{j \in \Lambda_k} c_j \vec{b}_j \quad \text{for some } c_j \text{'s.}$$

$$\Rightarrow v = \sum_{j=1}^n c_j \vec{b}_j. \quad \square$$

Criterion for diagonalizability

$D = \text{diag}(\lambda_1, \dots, \lambda_n)$ has n eigenvalues (counting multiplicity). So if $A: V \rightarrow V$ is diagonalizable, it must have n eigenvalues (counting multiplicity).

Thm 2.8: Suppose $A: V \rightarrow V$ linear has $n = \dim V$ eigenvalues (if $F = \mathbb{C}$, this assumption is redundant). Then A is diagonalizable iff for each eigenvalue λ , the dimension of $\ker(A - \lambda I)$ coincides with the multiplicity of λ .

Pf. (\Rightarrow) If A has a diagonal repr $[A]_{\mathcal{B}, \mathcal{B}}$, then each eigenvalue has a corresponding eigenvector.
e.g. if diagonal contains same eigenvalue λ j times, there will be j lin indp eigenvectors associated to λ .

$$[A]_{\mathcal{B}, \mathcal{B}} \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

Suppose $A\vec{v} = \lambda\vec{v}$
 Then $(A - \lambda I)\vec{v} = 0$

$$[A - \lambda I]_{B, B} [\vec{v}]_B$$

$$= \begin{pmatrix} 0 & \lambda_2 & 0 & \lambda_4 & \dots & \lambda_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}_B$$

dimension of nullspace is exactly multiplicity of λ .

(\Leftarrow) Let $\lambda_1, \dots, \lambda_p$ be the ^{distinct} eigenvalues of A , $E_k = \ker(A - \lambda I)$ the corresponding eigenspaces. E_1, \dots, E_p are lin. indp as subspaces. Let B_k be a basis of E_k .

$B = \bigcup_k B_k$ is a lin. indp list of vectors in V .
 By assumption, $\dim E_k = \text{multiplicity of } \lambda_k$.

Sum of multiplicities = n , so B has $n = \dim V$ vectors in it. It's a basis (of eigenvectors),

so A is diagonalizable. \square

$$\underline{\text{Ex.}} \quad A = \begin{pmatrix} 1 & 2 \\ 8 & 1 \end{pmatrix}$$

$$\begin{aligned} \det \begin{vmatrix} 1-\lambda & 2 \\ 8 & 1-\lambda \end{vmatrix} &= (1-\lambda)^2 - 16 \\ &= \lambda^2 - 2\lambda - 15 = (\lambda - 5)(\lambda + 3) \end{aligned}$$

Two eigenvalues $\rightarrow \lambda_1 = 5, \lambda_2 = -3$

$$A - 5I = \begin{pmatrix} 1-5 & 2 \\ 8 & 1-5 \end{pmatrix} = \begin{pmatrix} -4 & 2 \\ 8 & -4 \end{pmatrix}$$

$$\underline{\ker(A - 5I)}: \begin{pmatrix} -4 & 2 \\ 8 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} \frac{2}{-4} & -1 \\ 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & 0 \end{pmatrix}$$

$\begin{pmatrix} \frac{1}{2}x_2 \\ x_2 \end{pmatrix}, x_2 \in \mathbb{R} \rightarrow \ker \text{ is spanned by } \underbrace{\begin{pmatrix} 1 \\ 2 \end{pmatrix}}_{\text{eigenvector}}$

$$\begin{aligned} \underline{A + 3I} &= \begin{pmatrix} 4 & 2 \\ 8 & 4 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \\ &\rightarrow \begin{pmatrix} 1 \\ -2 \end{pmatrix} \end{aligned}$$

$$D = \begin{pmatrix} 5 & 0 \\ 0 & -3 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 \\ 8 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}^{-1}$$

Ex: A non-diagonalizable matrix

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$p(\lambda) = (1-\lambda)^2 = 0 \Rightarrow \lambda = 1 \quad (\text{multiplicity})$$

$$\dim \ker(A - 1I) = 1$$

so $\dim(\text{eigenspace for } \lambda = 1) \neq \text{multiplicity of } \lambda = 1$

Ex: (Complex eigenvalues)

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}.$$

$$p(\lambda) = \det \begin{pmatrix} 1-\lambda & 2 \\ -2 & 1-\lambda \end{pmatrix} = (1-\lambda)^2 + 2^2 = 0$$

$$\Rightarrow \lambda = 1 \pm 2i$$

$$A - (1+2i) = \begin{pmatrix} -2i & 2 \\ -2 & -2i \end{pmatrix}$$

$\rightarrow \begin{pmatrix} 1 \\ i \end{pmatrix}$ is an eigenvector

$$\text{If } Av = \lambda v, \text{ then } \overline{Av} = \overline{\lambda v} \rightarrow \overline{A}\bar{v} = \bar{\lambda} \bar{v}$$
$$A\bar{v} = \bar{\lambda} \bar{v}.$$

So for $\lambda = 1-2i$, $\begin{pmatrix} 1 \\ i \end{pmatrix}$ is an eig. vec.

$$A = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} 1+2i & 0 \\ 0 & 1-2i \end{pmatrix} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}^{-1}$$

Block matrices

Can slice a matrix into blocks

$$\left(\begin{array}{cc|cc} \cdot & \cdot & \cdot & \cdot \\ \cdot & A & \cdot & B \\ \hline \cdot & \cdot & \cdot & \cdot \\ \cdot & C & \cdot & D \end{array} \right) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

$$\begin{pmatrix} A_{1,1} & \cdots & A_{1,q} \\ A_{2,1} & \ddots & A_{2,q} \\ \vdots & \ddots & \vdots \\ A_{p,1} & \cdots & A_{p,q} \end{pmatrix}$$

All blocks in a row
have same # of rows
All blocks in a col
have same # of
cols.

Let A be square ($k \times k$)

$$\det \begin{pmatrix} I_n & * \\ 0 & A \end{pmatrix} = \det \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & * \\ \hline 0 & 0 & A \end{pmatrix}$$

cofactor expansion along 1st col

$$\det \begin{pmatrix} I_n & * \\ 0 & A \end{pmatrix} = \underbrace{1 \cdot 1 \cdots 1}_n \det A.$$

Block matrices can be multiplied like ordinary matrices, provided dimensions match

$$a_{ij} = \left(\begin{array}{c|c} \text{---} & \text{---} \\ \text{---} & \text{---} \end{array} \right) \left(\begin{array}{c|c} \text{---} & \text{---} \\ \text{---} & \text{---} \end{array} \right)$$

The observation is that $\left(\begin{array}{c|c} \text{---} & \text{---} \\ \text{---} & \text{---} \end{array} \right) = \left(\begin{array}{c} \text{---} \\ \text{---} \end{array} \right) + \left(\begin{array}{c} \text{---} \\ \text{---} \end{array} \right)$

$$= \left(\begin{array}{c} \text{---} \\ \text{---} \end{array} \right) \left(\begin{array}{c} \text{---} \\ \text{---} \end{array} \right) + \left(\begin{array}{c} \text{---} \\ \text{---} \end{array} \right) \left(\begin{array}{c} \text{---} \\ \text{---} \end{array} \right)$$

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \begin{pmatrix} I & B \\ 0 & C \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix}$$

$$\Rightarrow \det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det A \det C$$

$$\det \left(\begin{pmatrix} A & * \\ 0 & B \end{pmatrix} - \lambda I_n \right) \quad A, B \text{ square}$$

$$= \det \underbrace{\begin{pmatrix} A - \lambda I_k \\ 0 \end{pmatrix}}_B \det \begin{pmatrix} B - \lambda I_{n-k} \end{pmatrix} \quad k+l=n$$

Now suppose $\vec{v}_1, \dots, \vec{v}_n$ is a basis of V , and that the first k vectors $\vec{v}_1, \dots, \vec{v}_k$ are eigenvectors of $A: V \rightarrow V$ corresponding to an eigenvalue λ^* . (i.e. $\vec{v}_1, \dots, \vec{v}_k \in \ker(A - \lambda^* I)$). Then

$$[A]_{BB} = \begin{pmatrix} \lambda^* I_k & * \\ 0 & B \end{pmatrix}$$

$$B \in M_{n-k, n-k}$$

The characteristic poly of A has the form

$$p(\lambda) = (\lambda^* - \lambda)^k g(\lambda), \quad g = \text{polynomial}$$

\Rightarrow the multiplicity of λ^* is at least as large as $\dim \ker(A - \lambda^* I)$.

$$\Rightarrow \dim \ker(A - \lambda^* I) \leq \text{multiplicity of } \lambda^*.$$

Ex: Find all square roots of

$$A = \begin{pmatrix} 5 & 2 \\ -3 & 0 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix}$$

$$\det A - \lambda I = \begin{matrix} \text{def} \\ \begin{pmatrix} 5-\lambda & 2 \\ -3 & -\lambda \end{pmatrix} \end{matrix} = -(5-\lambda)\lambda + 6 \\ = \lambda^2 - 5\lambda + 6 \\ = (\lambda-3)(\lambda-2)$$

$$\underline{\lambda = 3} \quad A - 3I = \begin{pmatrix} 2 & 2 \\ -3 & -3 \end{pmatrix} \rightarrow v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\underline{\lambda = 2} \quad A - 2I = \begin{pmatrix} 3 & 2 \\ -3 & -2 \end{pmatrix} \quad v_2 = \begin{pmatrix} 2 \\ -3 \end{pmatrix} \quad \frac{-3+2}{=-1}$$

$$A = \begin{pmatrix} 1 & 2 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & -3 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 1 & 2 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -3 & -2 \\ 1 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 2 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} \pm\sqrt{3} & 0 \\ 0 & \pm\sqrt{2} \end{pmatrix} \begin{pmatrix} -3 & -2 \\ 1 & 1 \end{pmatrix}$$

four possible square roots

$$B = \begin{pmatrix} \pm\sqrt{3} & \pm 2\sqrt{2} \\ \mp\sqrt{3} & \mp 3\sqrt{2} \end{pmatrix} \begin{pmatrix} -3 & -2 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \mp 3\sqrt{3} \mp 2\sqrt{2} & \mp 2\sqrt{3} \pm 2\sqrt{2} \\ \pm 3\sqrt{3} \mp 3\sqrt{2} & \pm 2\sqrt{3} \mp 3\sqrt{2} \end{pmatrix}$$