

Invertibility and Equations

Thm: Let $A: X \rightarrow Y$ be linear. Then A is invertible if and only if for any $\vec{b} \in Y$ the egn $A\vec{x} = \vec{b}$ has a unique solution $\vec{x} \in X$.

Pf: (\Rightarrow) Suppose A invertible. $\vec{x} = A^{-1}\vec{b}$ solves $A\vec{x} = \vec{b}$. Suppose \vec{x}_i also solves the egn ($A\vec{x}_i = \vec{b}$).

Then

$$A^T A \vec{x}_i = A^{-1} \vec{b}$$

$$\Rightarrow \vec{x}_i = \vec{x}.$$

(\Leftarrow) Suppose $A\vec{x} = \vec{y}$ has a unique soln $\forall \vec{y} \in Y$. Call the unique sol'n associated to \vec{y} $B(\vec{y}) \in X$.

Then B is a function $B: Y \rightarrow X$. We check that B is linear. Let $\vec{y}_1, \vec{y}_2 \in Y, \alpha, \beta \in F$.

$$\text{Let } \vec{x}_1 = B(\vec{y}_1), \vec{x}_2 = B(\vec{y}_2).$$

$$A(\alpha \vec{x}_1 + \beta \vec{x}_2) = \alpha A \vec{x}_1 + \beta A \vec{x}_2 \\ = \alpha \vec{y}_1 + \beta \vec{y}_2.$$

so $\alpha \vec{x}_1 + \beta \vec{x}_2$ is the unique solution
 $B(\alpha \vec{y}_1 + \beta \vec{y}_2)$, i.e. B is linear.

Now, let $\vec{x} \in X$, $\vec{y} = A\vec{x}$. By def'n,

$$\vec{x} = B\vec{y}. \text{ So}$$

$$BA\vec{x} = B(\vec{y}) = \vec{x}.$$

$$\Rightarrow BA = I_X.$$

Now let $\vec{y} \in Y$, set $\vec{x} = B\vec{y}$, so that $\vec{y} = A\vec{x}$. Then

$$AB\vec{y} = A\vec{x} = \vec{y}.$$

$$\Rightarrow AB = I_Y. \quad \square$$

Corollary: An $m \times n$ matrix is invertible if and only if its columns form a basis for \mathbb{F}^m (\mathbb{R}^m or \mathbb{C}^m)

Subspaces

A subspace $V_0 \subset V$ of V is a nonempty subset of V s.t.

$$(1) \quad \alpha \vec{u} + \beta \vec{v} \in V_0 \quad \forall \vec{u}, \vec{v} \in V_0, \alpha, \beta \in \mathbb{F}$$

i.e. A subspace is a subset of V that is also a vector space w/ the same addition and scaling.

Condition (1) ensures this.

examples:

1) the trivial subspaces

$$\{0\}, V.$$

\emptyset is not a subspace

2) $A: V \rightarrow W$ linear

the nullspace (or kernel) of A defined by
 $\text{Null } A$ $\text{ker } A$

$$\text{ker } A = \{ \vec{v} \in V : A\vec{v} = \vec{0} \}$$

why \Rightarrow this a subspace?

3) $A: V \rightarrow W$ linear

The range (or image of A)

$\text{Ran } A = \{ \vec{w} \in W : \vec{w} = A\vec{v} \text{ for some } \vec{v} \in V \}$

4) Given a list of vectors $\vec{v}_1, \dots, \vec{v}_r \in V$, its

span $L(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_r)$ is the set

$$L(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_r) = \left\{ \alpha_1 \vec{v}_1 + \dots + \alpha_r \vec{v}_r : \alpha_i \in \mathbb{F} \text{ for } i=1, \dots, r \right\}$$

i.e. the collection of all possible linear combinations

If A is a matrix (i.e. $A: \mathbb{R}^m \rightarrow \mathbb{R}^n$),
then $\text{Ran } A$ is simply the span of the columns $\vec{a}_1, \dots, \vec{a}_n$.

Systems of Linear Eqns

m equations, n unknowns x_1, \dots, x_n

$$\left\{ \begin{array}{l} a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + \dots + a_{2,n}x_n = b_2 \\ \vdots \\ a_{m,1}x_1 + \dots + a_{m,n}x_n = b_m \end{array} \right. \quad (*)$$

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix}$$

Then (*) becomes $A\vec{x} = \vec{b}$.

Solving (*) is then equivalent to finding all \vec{x} s.t. $A\vec{x} = \vec{b}$.

Another way to write (*) is

$$x_1 \vec{a}_1 + \dots + x_n \vec{a}_n = \vec{b}$$

where \vec{a}_k is the k -th col of A .

$$a_k = \begin{pmatrix} a_{1,k} \\ a_{2,k} \\ \vdots \\ a_{m,k} \end{pmatrix}$$

Everything about the system is contained in the augmented matrix

$$\left(\begin{array}{cccc|c} a_{1,1} & a_{1,2} & \dots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} & b_m \end{array} \right)$$

Row operations

- 1) Row exchange: interchange two rows of the matrix
- 2) Scaling: scaling a row by a nonzero scalar
- 3) Row replacement: replace k -th row by its sum with a multiple of the j -th row for k, j of our choosing

Clear that 1) and 2) don't alter the set of solutions

For 3) : if we apply a type 3 operation, any \vec{x} that satisfies the old system will satisfy the new system.]

Operation 3 is reversible;

$$\text{row } k + \alpha(\text{row } j) \rightarrow \text{row } k$$

can be reversed by

$$\text{row } k - \alpha(\text{row } j) \rightarrow \text{row } k.$$

tells us $S_{\text{old}} \subseteq S_{\text{new}}$

using same argument a reverse op. , $S_{\text{new}} \subseteq S_{\text{old}}$.

$$\Rightarrow S_{\text{new}} = S_{\text{old}}$$

If we use $A\vec{x} = \vec{b}$ form of the system, we can express these row ops as matrix multiplication

$$\begin{array}{l} j \rightarrow \\ k \rightarrow \end{array} \left(\begin{array}{cccccc} 1 & & & & & & 0 \\ & \ddots & & & & & \\ & & 0 & & & & \\ & & & \ddots & & & \\ & & & & 1 & & \\ & & & & & \ddots & \\ 0 & & & & & & 1 \end{array} \right) =: E_1$$

multiplication on left by this matrix exchanges row j and row k

$$E_2 := k \rightarrow \begin{pmatrix} 1 & & & & 0 \\ & \ddots & & & \\ & & a & & \\ & 0 & & \ddots & \\ & & & & 1 \end{pmatrix} \quad \text{scale k-th row by } a$$

$$E_3 := j \rightarrow \begin{pmatrix} 1 & & & & 0 \\ & \ddots & & & \\ & & a & \dots & 1 \\ & 0 & & \ddots & \\ & & & & 1 \end{pmatrix} \quad \text{add } a(\text{row } j) \text{ to row } k$$

$$E_1 \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_j \vec{e}_k + x_{j+1} \vec{e}_{j+1} + \dots + x_k \vec{e}_j + \dots + x_n \vec{e}_n$$

same except now x_j and x_k are swapped.

since E_1 does this to each column, $E_1 A$ exchanges rows j and k in A

$$E_3 \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ ax_j + x_k \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ \vdots \\ a \\ \vdots \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ \vdots \\ a \\ \vdots \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}$$

Each of these three matrices is invertible.

E_1 is its own inverse

E_2^{-1} is obtained by replacing a with $\frac{1}{a}$

E_3^{-1} is obtained by replacing a with $-a$

If E is one these special matrices,

$$A\vec{x} = \vec{b} \iff EA\vec{x} = E\vec{b}$$

(\Rightarrow) clear

(\Leftarrow) multiply by E^{-1} .

So we see row ops don't change set of solns.

Row reduction

The main step:

- a) Find leftmost nonzero column
- b) if necessary, apply row exchanges to make first entry of this col nonzero
This entry will be called a pivot (can also scale to make pivot = 1)
- c) "kill" (make = 0) all nonzero entries below the pivot by adding an appropriate multiple of first row to rows 2, 3, ..., m .

Apply main step to matrix A , then "forget" the first row; it is now "frozen". Apply main step to remaining rows.

Process terminates after $\leq m$ main steps.

E.g.:

$$\left\{ \begin{array}{l} x_1 + 2x_2 + 3x_3 = 1 \\ 3x_1 + 2x_2 + x_3 = 7 \\ 2x_1 + x_2 + 2x_3 = 1 \end{array} \right.$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 \\ 3 & 2 & 1 & 7 \\ 2 & 1 & 2 & 1 \end{array} \right)$$

$$\rightarrow -3R_1 \left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 \\ 0 & -4 & -8 & 4 \\ 0 & -3 & -4 & -1 \end{array} \right)$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & -3 & -4 & -1 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 2 & -4 \end{array} \right) + 3R_2$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 1 & -2 \end{array} \right)$$

$$\text{so } x_3 = -2$$

$$\Rightarrow x_2 + 2(-2) = -1 \Rightarrow x_2 = 3$$

$$\Rightarrow x_1 + 2 \cdot 3 + 3(-2) = 1 \Rightarrow x_1 = 1.$$

$$\vec{x} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$$

Instead of back substitution, can do row reduction backwards to clear entries above diagonal

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 1 & -2 \end{array} \right) \xrightarrow{-2R_2} \left(\begin{array}{ccc|c} 1 & 2 & 0 & 7 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{array} \right) \xrightarrow{} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{array} \right)$$

Def. A matrix is in echelon form if it satisfies:

- 1) All zero rows are at the bottom
In a nonzero row, call the leftmost nonzero entry the leading entry.

- 2) For a nonzero row, the leading entry is strictly to the right of leading entry in row above.

The leading entry of each row is called a pivot. These are exactly the same pivots as above.

why are they
same?

$$\left(\begin{array}{ccccc|c} * & & & & & \\ 1 & * & & & & \\ 0 & 0 & * & & & \\ 0 & 0 & 0 & * & & \\ 1 & 0 & 0 & 0 & * & \end{array} \right)$$

row reduction yields echelon form

backward row reduction yields reduced echelon form
(RREF)

3. All pivot entries are 1

4. All entries above a pivot are 0.

example of RREF

$$\left(\begin{array}{ccccc|c} 1 & 2 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 5 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 3 \end{array} \right)$$

x_1, x_3, x_5 are
pivot variables

solution is easy to read off once in RREF

$$\left\{ \begin{array}{l} x_1 + 2x_2 = 1 \\ x_3 + 5x_4 = 2 \\ x_5 = 3 \end{array} \right.$$

move non-pivot variables to one side

$$\begin{cases} x_1 = 1 - 2x_2 \\ x_3 = 2 - 5x_4 \\ x_5 = 3 \end{cases}$$

$A\vec{x} = b$ has solution

$$\vec{x} = \begin{pmatrix} 1 - 2x_2 \\ x_2 \\ 2 - 5x_4 \\ x_4 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ 0 \\ -5 \\ 1 \\ 0 \end{pmatrix}$$

$$x_2, x_4 \in \mathbb{R}$$

x_2 and x_4 are free variables

any choice of them yields a valid sol'n,
and any solution is obtained in this way.

This always works: any pivot entry is
the only pivot in that row, so a
pivot variable can always be written
in terms of the free/nonpivot variables.

E.g.

$$\left\{ \begin{array}{l} 2x_1 - 2x_2 - x_3 + 6x_4 - 2x_5 = 1 \\ x_1 - x_2 + x_3 + 2x_4 - x_5 = 2 \\ 4x_1 - 4x_2 + 5x_3 + 7x_4 - x_5 = 6 \end{array} \right.$$

↓

$$\left(\begin{array}{ccccc|c} 2 & -2 & -1 & 6 & -2 & 1 \\ 1 & -1 & 1 & 2 & -1 & 2 \\ 4 & -4 & 5 & 7 & -1 & 6 \end{array} \right)$$

↓

$$\left(\begin{array}{ccccc|c} 1 & -1 & 1 & 2 & -1 & 2 \\ 2 & -2 & -1 & 6 & -2 & 1 \\ 4 & -4 & 5 & 7 & -1 & 6 \end{array} \right)$$

↓

$$\left(\begin{array}{ccccc|c} 1 & -1 & 1 & 2 & -1 & 2 \\ 0 & 0 & -3 & 2 & 0 & -3 \\ 0 & 0 & 1 & -1 & 3 & -2 \end{array} \right)$$

↓

$$\left(\begin{array}{ccccc|c} 1 & -1 & 1 & 2 & -1 & 2 \\ 0 & 0 & 1 & -1 & 3 & -2 \\ 0 & 0 & -3 & 2 & 0 & -3 \end{array} \right)$$

$$+ 3R_2 \left(\begin{array}{ccccc|c} 1 & -1 & 1 & 2 & -1 & 2 \\ 0 & 0 & 1 & -1 & 3 & -2 \\ 0 & 0 & 0 & -1 & 9 & -9 \end{array} \right) \text{REF}$$

$$\left(\begin{array}{ccccc|c} \boxed{1} & -1 & 1 & 2 & -1 & 2 \\ 0 & 0 & \boxed{1} & -1 & 3 & -2 \\ 0 & 0 & 0 & \boxed{1} & -9 & 9 \end{array} \right)$$

$$-2R_3 \left(\begin{array}{ccccc|c} \boxed{1} & -1 & 1 & 0 & 17 & -16 \\ 0 & 0 & \boxed{1} & 0 & -6 & 7 \\ 0 & 0 & 0 & \boxed{1} & -9 & 9 \end{array} \right)$$

$$-R_2 \left(\begin{array}{ccccc|c} \boxed{1} & -1 & 0 & 0 & 23 & -23 \\ 0 & 0 & \boxed{1} & 0 & -6 & 7 \\ 0 & 0 & 0 & \boxed{1} & -9 & 9 \end{array} \right)$$

Analyzing the pivots

Def: $A\vec{x} = \vec{b}$ is consistent if it has a sol'n,
inconsistent otherwise.

Prop: A system is inconsistent iff there is a pivot in the last col of the EF of the augmented matrix (i.e. EF has a row $(0 \ 0 \ \dots \ 0 \mid b), b \neq 0$)

Pf: \square

Prop: Consider a system $A\vec{x} = \vec{b}$.

- 1) A sol'n (if it exists) is unique iff there are no free variables
- 2) $A\vec{x} = \vec{b}$ is consistent for all \vec{b} iff EF of A has a pivot in every row
- 3) $A\vec{x} = \vec{b}$ has a unique sol'n for each \vec{b} iff EF of A has a pivot in every col and row.

Pf:

(1) is immediate, since no free vars means each variable has a fixed value $x_i = c_i$.

$$\vec{0}^T \rightarrow \left(\begin{array}{c|c} * & * \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{array} \right)$$

zero rows
are "pushed down"
by row reduction

(2) If A has a pivot in every row, then the augmented matrix will not have a pivot in last col, so sol'n exists

$$\left(\begin{array}{c|c} * & \\ * & \\ \vdots & \\ * & \end{array} \right)$$

Converse: Suppose the echelon form A_e of A has a zero row.

$$A_e = \underbrace{E_N \dots E_2 E_1}_E A$$

if A_e has a 0 row, then the last row must also be 0.

$$\text{So set } b = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Then $A_e \vec{x} = b$ is inconsistent

$$\Rightarrow E^{-1} A_e \vec{x} = E^{-1} \vec{b} \text{ is inconsistent}$$

\parallel
 $A \vec{x}$ why?

Aside: If $A \vec{x} = \vec{b}$, then $EA \vec{x} = E \vec{b}$

If E is invertible, then converse is true:

$$EA \vec{x} = E \vec{b} \Rightarrow A \vec{x} = \vec{b}.$$

(3) follows from (1) + (2). \square

Thm: The reduced echelon form of a matrix A is unique.

Pf: Suppose R and S are both RREF matrices of A and $R \neq S$. Find the first column (k) where R and S differ. Form the matrix R' by taking k -th col of R and every pivot col to the left of it. Form S' from S similarly.

For example if

$$R = \left(\begin{array}{cc|cc|c} 1 & 2 & 0 & 3 & 5 \\ 0 & 0 & 1 & 4 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right), S = \left(\begin{array}{cc|cc|c} 1 & 2 & 0 & 7 & 9 \\ 0 & 0 & 1 & 8 & 9 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

then

$$R' = \left(\begin{array}{cc|c} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{array} \right), S' = \left(\begin{array}{cc|c} 1 & 0 & 7 \\ 0 & 1 & 8 \\ 0 & 0 & 0 \end{array} \right).$$

In general,

$$R' = \left(\begin{array}{c|c} I_n & \vec{r}' \\ \hline 0 & 0 \end{array} \right) \text{ or } \left(\begin{array}{c|c} I_n & 0 \\ \hline 0 & \vec{r}' \end{array} \right)$$

if pivot

$$S' = \left(\begin{array}{c|c} I_n & \vec{s}' \\ \hline 0 & 0 \end{array} \right) \text{ or } \left(\begin{array}{c|c} I_n & 0 \\ \hline 0 & \vec{s}' \end{array} \right)$$

R' and S' are row equivalent, since deleting columns doesn't affect row equivalence.

Also, $R' \neq S'$.

View R' and S' as augmented matrices.
 R' and S' have the same set of solutions since they are row equivalent.

So either $\vec{r}' = \vec{s}'$ or they're both inconsistent.
In either case, $R' = S'$, which is a contradiction.

□

Rank: In echelon form, any row or col has at most one pivot.

3.1 Conditions about linear independence, bases

Prop. Let $\vec{v}_1, \dots, \vec{v}_m \in \mathbb{R}^n$, and let

$A = [\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m]$ be an $n \times m$ matrix with cols $\vec{v}_i, i=1, \dots, m$. Then

(1) $\vec{v}_1, \dots, \vec{v}_m$ are lin indp iff echelon form of A has a pivot in every col.

(2) $\vec{v}_1, \dots, \vec{v}_m$ spans \mathbb{R}^n iff echelon form has pivot in each row

(3) $\vec{v}_1, \dots, \vec{v}_m$ is a basis for \mathbb{R}^n iff EF of A has a pivot in each col and each row.

Pf: $\vec{v}_1, \dots, \vec{v}_m \in \mathbb{R}^n$ are LI iff

$$x_1 \vec{v}_1 + \dots + x_m \vec{v}_m = \vec{0}$$

has only one solution, $x_1 = x_2 = \dots = x_m = 0$. i.e.

$A\vec{x} = \vec{0}$ has the unique solution $\vec{x} = 0$.

this happens iff A has a pivot in every col. (1)

(2) v_1, \dots, v_m spans \mathbb{R}^n iff

$$x_1\vec{v}_1 + \dots + x_m\vec{v}_m = \vec{b}$$

has a soln for every $\vec{b} \in \mathbb{R}^n$.

This happens iff A has a pivot in every row.

(3) Combine (1) and (2). \square

Prop: Any lin indp list $\vec{v}_1, \dots, \vec{v}_m$ in \mathbb{R}^n cannot have more than n vectors in it.

Pf: $A = (\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m)$ $n \times m$ matrix

Then A has a pivot in each col.

If $m > n$, this is not possible. (Pigeonhole principle) \square

Prop: Any two bases of V have the same number of vectors in them.

Pf: Let v_1, \dots, v_n and w_1, \dots, w_m be bases of V . For the sake of concreteness, suppose $n \leq m$.

The map $A: \mathbb{F}^n \rightarrow V$ defined by

$$A(\vec{e}_k) = \vec{v}_k, k = 1, \dots, n$$

is an isomorphism.

$A^{-1} : V \rightarrow \mathbb{F}^n$ is also an isomorphism, so

$A^{-1}\vec{w}_1, \dots, A^{-1}\vec{w}_m$ is a basis.

So $m \leq n \Rightarrow m = n \quad \square$

Def. This number is called the dimension of V .

Rank: Any basis of \mathbb{F}^n has exactly n vectors in it.

Prop. Any spanning set in \mathbb{F}^n must have at least n vectors.

Pf. Let $\vec{v}_1, \dots, \vec{v}_m$ span \mathbb{F}^n . Then

$$A = \left(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m \right)$$

has a pivot in every row (i.e. it has n pivots. $\Rightarrow n \leq m \quad \square$

Revisit RREF uniqueness pf. Pivot cols

$$\left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{array} \right) \rightarrow \left(\begin{array}{cccc} 1 & 3 & 4 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 1 & 2 \end{array} \right)$$

Deleting cols can break echelon form,
but deleting last col is fine.

Prop 3.6: A matrix is invertible iff its echelon form has a pivot in every row and every col

Pf: we've seen $A\vec{x} = \vec{b}$ has a unique sol'n for each \vec{b} iff echelon form of A has a pivot in each row and col.

OROTH A is invertible iff $A\vec{x} = \vec{b}$ has unique sol for each \vec{b} . \square

Cor: An invertible matrix must be square.

Prop 3.8 If A ($n \times n$) is left inv, or right inv, then it is invertible.

Pf: A inv $\Leftrightarrow A\vec{x} = \vec{b}$ unique sol'n for each \vec{b}
 $\Leftrightarrow A$ has pivot in each row, each col

Suppose A left inv. Then $A\vec{x} = \vec{0}$ has $\vec{0}$ as its only solution ($B\vec{A}\vec{x} = B\vec{0} \rightarrow \vec{x} = \vec{0}$).

so no free vars \Rightarrow each col has pivot.
 $A = n \times n$, so each col has a pivot, so A is invertible.

Let $\vec{b} \in \mathbb{R}^n$. Suppose $AC = I$. Let $\vec{x} = C\vec{b}$.

$$A\vec{x} = AC\vec{b} = I\vec{b} = \vec{b}$$

So $A\vec{x} = \vec{b}$ always has sol'n $\vec{x} = C\vec{b}$.

So A has a pivot in every col. \square

Find A^{-1} by row reduction.

Def: two matrices are row equivalent

if row ops can transform one into the other.

(write $A \sim B$).

$$A = \underbrace{E_N E_{N-1} \dots E_1 B}_{\text{row ops}}$$

Obs: Any invertible matrix A is row eq.
to I_n .

Algorithm to compute A^{-1} (if A is invertible)

• form the $n \times 2n$ matrix

$$(A \mid I_n)$$

perform row ops to reduce A to I_n

$$(I_n \mid A^{-1})$$

why? $A\vec{x} = \vec{b}$ has solution $\vec{x} = A^{-1}\vec{b}$ if A
is inv.

Note $A^{-1}\vec{e}_k$ is the k -th col of A^{-1} .

So k -th col of A^{-1} is the solution to

$A\vec{x} = \vec{e}_k$. The above algorithm then
solves $A\vec{x} = \vec{e}_k$ for each $k = 1, \dots, n$ simultaneously.

Another way:

Let $E = E_N \dots E_2 E_1$ be the row ops taking A to I
i.e. $EA = I_n$. Then $E = A^{-1}$, so that $EI_n = A^{-1}$.

$$\text{So } E(A | I) = (I_n | A^{-1}). \square$$

Then: A invertible $\Rightarrow A = E_N \dots E_2 E_1$,
each E_i elementary.

$$\text{pf: } E = A^{-1}, \Rightarrow A = E^{-1}$$

$$A = E_1^{-1} E_2^{-1} \dots E_N^{-1}. \square$$

Dimension, Finite dimensional space

Def. A vector space is finite-dimensional if it has a finite basis.

Prop. A vector space V is f.d. iff it has a finite spanning set.

Obs. If V has basis $\vec{v}_1, \dots, \vec{v}_n$, then

$$A: V \rightarrow \mathbb{R}^n \text{ (or } \mathbb{F}^n\text{)}$$

$$A\vec{v}_k = \vec{e}_k, k=1, \dots, n$$

is an isomorphism.

Prop 5.2 Any LI list in a f.d.v.s V has no more than $\dim V$ vectors in it.

Pf. Let $\vec{v}_1, \dots, \vec{v}_m$ be LI. Let $A: V \xrightarrow{\cong} \mathbb{R}^n$.

Then $A\vec{v}_1, \dots, A\vec{v}_m$ is LI in $\mathbb{R}^n \Rightarrow m \leq n$. \square

$$\dim V$$

Prop 5.3 Any spanning set in a f.d.v.s V has at least $\dim V$ vectors in it.

Pf. Let $\vec{v}_1, \dots, \vec{v}_m \in V$ span V .

$A: V \rightarrow \mathbb{R}^n$ iso. Then $A\vec{v}_1, \dots, A\vec{v}_m$ spans \mathbb{R}^n ,

so $m \geq n = \dim V$. \square

Completing an LI system to a basis

Prop 5.4 An LI list of vectors $\vec{v}_1, \dots, \vec{v}_r \in V = \text{f.d.v.s}$ can be completed to a basis.

Pf. Let $n = \dim V$. Take some $v_{r+1} \notin \text{span}\{\vec{v}_1, \dots, \vec{v}_r\}$.

then v_1, \dots, v_r, v_{r+1} is LI. (why?)

If still not spanning, find some v_{r+2} , etc.

Process will terminate since an LI list can't have more than $n = \dim V$ vectors. \square

②

Thm 5.5 Let $V \subseteq W$ be a subspace.
 $W = \text{f.l.v.s.}$ Then V is f.l. and $\dim V \leq \dim W$.
 moreover, if $\dim V = \dim W$, then $V = W$.

Pf: If $V = \{0\}$, done. ✓

otherwise let v_1 be a nonzero vector in V .

If this doesn't span V , find $v_2 \notin \text{span}(v_1)$.

Continue process:

at each step, list is lin. indep.

Eventually must stop, since length of list $\leq \dim W$.
 (can't keep finding vectors not in $\text{span}(v_1, \dots, v_r)$).

Result is $v_1, \dots, v_m = \text{spanning}$, LF. □

General sol'n of linear system

Def: $A\vec{x} = \vec{b}$ is homogeneous if $\vec{b} = \vec{0}$.
i.e. the system is of the form $A\vec{x} = \vec{0}$.

for $A\vec{x} = \vec{b}$, the associated homogeneous system
is $A\vec{x} = \vec{0}$.

Thm 6.1 Suppose \vec{x}_1 satisfies $A\vec{x} = \vec{b}$ ($A: V \rightarrow W$)
(i.e. $A\vec{x}_1 = \vec{b}$). Let

$$H = \{ \vec{x} \in V : A\vec{x} = \vec{0} \}$$

Then the set

$$\vec{x}_1 + H := \{ \vec{x}_1 + \vec{x}_n : \vec{x}_n \in H \}$$

is the set of all sol'n's to $A\vec{x} = \vec{b}$.

$$\left(\begin{array}{l} \text{General sol'n of } A\vec{x} = \vec{b} = \text{General sol'n of } A\vec{x} = \vec{0} + \text{Particular sol'n of } A\vec{x} = \vec{b} \end{array} \right)$$

Pf: Suppose \vec{x}_1 is s.t. $A\vec{x}_1 = \vec{b}$. Suppose \vec{x}_n is s.t.

$$A\vec{x}_n = \vec{0}. \text{ Then } A(\vec{x}_1 + \vec{x}_n) = A\vec{x}_1 + A\vec{x}_n = A\vec{x}_1 = \vec{b}.$$

so $\vec{x}_1 + H \subseteq \text{all sol'n's to } A\vec{x} = \vec{b}$.

Suppose $A\vec{x} = \vec{b}$. Set $\vec{x}_h := \vec{x} - \vec{x}_1$.

$$A\vec{x}_h = A(\vec{x} - \vec{x}_1) = A\vec{x} - A\vec{x}_1 = \vec{b} - \vec{b} = \vec{0}.$$

So $\vec{x}_h \in \mathbb{H}$. So any sol'n of $A\vec{x} = \vec{b}$ can be written as $\vec{x} = \vec{x}_1 + \vec{x}_h$, w/ $\vec{x}_h \in \mathbb{H}$. \square

Ex.

$$\begin{array}{c} A \\ \left(\begin{array}{ccccc} 2 & 3 & 1 & 4 & -9 \\ 1 & 1 & 1 & 1 & -3 \\ 1 & 1 & 1 & 2 & -5 \\ 2 & 2 & 2 & 3 & -8 \end{array} \right) \vec{x} = \left(\begin{array}{c} 17 \\ 6 \\ 8 \\ 14 \end{array} \right) \end{array}$$

$$S = \left\{ \vec{x} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 2 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} 2 \\ -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}, x_3, x_5 \in \mathbb{R} \right\}$$

Suppose we were handed this solution and asked to check if it solves the system.

Can check that $\begin{pmatrix} 3 \\ 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}$ solves $A\vec{x} = \vec{b}$.

Check that $\begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$ each satisfy $A\vec{x} = \vec{0}$.

This would show each $\vec{x} \in S$ solves $A\vec{x} = \vec{b}$.

$$S' = \left\{ \vec{x} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 2 \\ 0 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \\ -1 \end{pmatrix} \mid s, t \in \mathbb{R} \right\}$$

Can also show each $\vec{x} \in S$ solves $A\vec{x} = \vec{b}$.

Are these all of the sol'n's? Row reduction

wouldn't lead you to this formula.

Need more theory to prove this gives all solutions.

Fundamental subspaces of a matrix

$A: V \rightarrow W$ linear

$$\ker A = \text{Null } A := \{ \vec{v} \in V : A\vec{v} = \vec{0} \} \subset V$$

$$\text{Ran } A := \{ \vec{w} \in W : \vec{w} = A\vec{v} \text{ for some } \vec{v} \in V \} \subset W$$

In other words, $\ker A$ is the set of solutions to the homogeneous egn $A\vec{v} = \vec{0}$.

$\text{Ran } A$ is the set of \vec{b} for which $A\vec{x} = \vec{b}$ is consistent.

Let A an $m \times n$ matrix (i.e. $A: \mathbb{F}^n \rightarrow \mathbb{F}^m$).

Any \vec{w} from $\text{Ran } A$ can be written as a linear combination of the cols of A . So $\text{Ran } A$ is sometimes called the column space (when $A: \mathbb{F}^n \rightarrow \mathbb{F}^m$)
col A

Can also define $\text{Ran } A^T$ and $\ker A^T$.
row space left null space

$\text{Ran } A, \ker A, \text{Ran } A^T, \ker A^T$

"the fundamental subspaces"

Def: Let $A = \text{matr.}$

$$\text{rank } A := \dim (\text{Ran } A).$$

Computing fund. spaces and rank

Let A be a matrix, A_e its echelon form.

Thm: 1. The pivot cols of $\underline{\underline{A}}$ gives a basis for $\text{Ran } A$
2. The pivot rows of A_e gives a basis for $\text{Ran } A^T$.
3. A basis for $\ker A$ can be found by solving
 $A\vec{x} = \vec{0}$.

Ex: $\begin{pmatrix} 1 & 1 & 2 & 2 & 1 \\ 2 & 2 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 2 \\ 1 & 1 & -1 & -1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 2 & 2 & 1 \\ 0 & 0 & -3 & -3 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} A_e$

The pivot columns $\begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 3 \\ -1 \end{pmatrix}$ from A form a basis for $(\text{col } A) (\text{ran } A)$

The pivot rows

$$\begin{pmatrix} 1 \\ -1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 6 \\ -3 \\ -1 \end{pmatrix}$$

from a basis for the row space $\text{Ran } A^T$.

To compute $\ker A$, compute A_{re}

$$A_{re} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1/3 \\ 0 & 1 & 0 & 0 & 1/3 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$x_2 \quad x_4 \quad x_5$

x_2, x_4, x_5 free

$$x_1 = -x_2 - \frac{1}{3}x_5$$

$$x_3 = -x_4 - \frac{1}{3}x_5$$

$$\vec{x} = \begin{pmatrix} -x_2 - \frac{1}{3}x_5 \\ x_2 \\ -x_4 - \frac{1}{3}x_5 \\ x_4 \\ x_5 \end{pmatrix}$$

$$= x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -1/3 \\ 0 \\ -1/3 \\ 0 \\ 1 \end{pmatrix}$$

form a basis for $\ker A$

no shortcut for finding $\ker A^T$; need to solve $A^T \vec{x} = \vec{0}$

- why does this always give a basis for $\ker A$?

After solving $A\vec{x} = 0$

$$\vec{x} = \begin{pmatrix} \cdot \\ \vdots \\ \cdot \end{pmatrix} \quad \begin{array}{l} \text{some entries} \\ \text{free, others written} \\ \text{in terms of free vars} \end{array}$$

To make free entries 0, need to set corresponding free var to 0. i.e. the vectors obtained are lin. indp. This list of vectors also spans $\ker A$ (it's a complete description for solutions of $A\vec{x} = 0$). So we have a basis for $\ker A$.

- Pivot cols give basis for $\text{ran } A$:

Notice: pivot cols of A_{re} give a basis for $\text{Ran } A_{re}$. Why?

Row ops are invertible

$$EA = E \begin{pmatrix} \vec{a}_1 & \dots & \vec{a}_n \end{pmatrix} = \begin{pmatrix} E\vec{a}_1 & \dots & E\vec{a}_n \end{pmatrix}$$

E inv, so E preserves linear independence
 \rightarrow pivot cols of A are lin. indp.

$$A_{re} = EA, \quad E \text{ invertible.}$$

Let $\vec{v}_1, \dots, \vec{v}_r$ be the pivot cols of A .

Let \vec{v} be any other col of A .

There are scalars α_i s.t.

$$\vec{Ev} = \alpha_1 E\vec{v}_1 + \dots + \alpha_r E\vec{v}_r. \text{ why?}$$

$$\rightarrow \vec{v} = \alpha_1 \vec{v}_1 + \dots + \alpha_r \vec{v}_r.$$

So pivot cols span $\text{Ran } A$.

- $\text{Ran } A^T$ (row space)

- the pivot rows of A^T are lin indep

$$\begin{matrix} w_1 & \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ w_2 & \\ w_3 & \\ w_4 & \end{matrix}$$

Let w_1, \dots, w_r be the pivot rows of A^T .

$$\text{Consider } \alpha_1 w_1 + \dots + \alpha_r w_r = 0. \quad \alpha_i \in \mathbb{R}$$

α_1 must be 0. α_2 must be 0, and so on.

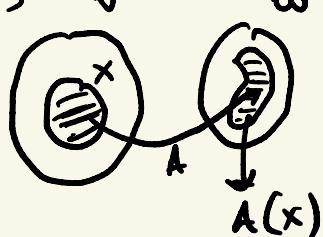
- pivot rows span $\text{Ran } A^T$

claim: row ops do not change row space

For a map A and a set $X \subseteq \text{domain } A$ define

$$A(X) := \{A(x) : x \in X\}$$

"the image of X under A "



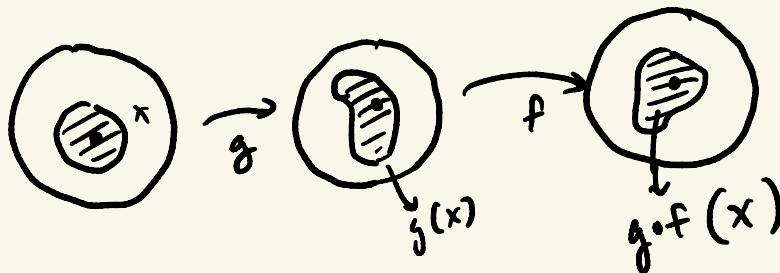
$A_e = EA$, E ~~max~~, invertible

$$\text{Ran } A_e^T = \text{Ran } ((EA)^T)$$

$$= \text{Ran } (A^T E^T) = A^T (\text{Ran } E^T)$$

\downarrow
why?

$$= A^T (\mathbb{R}^m) = \text{Ran } A^T. \quad \square$$



$$\{ f(g(x)) : x \in X \}$$

||

$$\{ f(y) : y \in g(x) \}$$

Thm 7.1 (Rank Thm)

$$\text{rank } A = \text{rank } A^T$$

"col rank = row rank"

Pf.: $\text{rank } A = \# \text{ pivots in } A$
 $\text{rank } A^T = \# \text{ pivots in } A. \quad \square$

Thm 7.2 (Rank-nullity Thm)

Let $A \in M_{m \times n}$ (i.e. $A: \mathbb{F}^n \rightarrow \mathbb{F}^m$, linear). Then

$$1) \dim \ker A + \dim \text{ran } A = n \quad (\text{dimension of domain})$$

(rank A)

$$2) \dim \ker A^T + \text{rank } A = m$$

Pf.: $\dim \ker A = \# \text{ of free vars}$

$\text{rank } A = \# \text{ of pivots}$

$$(\# \text{ free vars}) + (\# \text{ pivots}) = \# \text{ cols} = n.$$

part (2) is part (1) applied to A^T plus the previous thm.

Ex:

$$\begin{pmatrix} 2 & 3 & 1 & 4 & -9 \\ 1 & 1 & 1 & 1 & -3 \\ 1 & 1 & 1 & 2 & -5 \\ 2 & 2 & 2 & 3 & -8 \end{pmatrix} \vec{x} = \begin{pmatrix} 17 \\ 6 \\ 8 \\ 14 \\ b \end{pmatrix}$$

A

We saw that

$$\vec{x} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 2 \\ 0 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}, s, t \in \mathbb{R}$$

satisfies $A\vec{x} = \vec{b}$. Are these all sol'ns?

These two vectors lie in $\ker A$, are lin. indep (why?)

Perform one iteration of "main step" in row red:

obtain

$$\begin{pmatrix} 1 & 1 & 1 & 1 & -3 \\ 0 & 1 & -1 & 2 & -3 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

already 3 pivots, so $\text{rank } A \geq 3$ (can see it's equal 3, but don't need to know that).

$$\begin{aligned} \text{rank } A + \dim \ker A &= 5 & -\text{rank } A &\leq -3 \\ \Rightarrow \dim \ker A &= 5 - \text{rank } A & & \\ & & \leq 2. \end{aligned}$$

So $\ker A$ contains no more than 2 lin. indp.
 we found 2 lin. indp. vectors in $\ker A$,
 so we have a basis on our hands.

Thm 7.3 $A \in M_{m \times n}$.

The $\stackrel{(1)}{A\vec{x} = \vec{b}}$ has a solution for each $\vec{b} \in \mathbb{R}^m$
 iff $\stackrel{(2)}{A^T \vec{x} = 0}$ has only the trivial solution.

Pf. Statement (1) \iff A has pivot in each row
 (i.e. $\text{rank } A = m$). A^T is $n \times n$. Statement (2)
 \iff A has a pivot in each col (i.e. m pivots).

so (1) and (2) are both equivalent to
 saying A has m pivots. \square

7.4 Completion of an LI list to a basis

The proof for being able to complete a LI list to a basis doesn't provide a practical algorithm to construct the basis.

Notice: if $A_{re} \in M_{mn}$ is in reduced ech. form, then the nonzero rows can be completed to a basis of \mathbb{R}^n .

e.g. $A_{re} = \begin{pmatrix} 1 & & & & & & \\ & 1 & & & & & \\ & & 1 & & & & \\ & & & 1 & & & \\ & & & & 1 & & \\ & & & & & 1 & \\ & & & & & & \downarrow \end{pmatrix} \rightarrow$ insert three new rows here

$$\begin{pmatrix} * & * & 0 & 0 & * & 0 & * \\ 1 & & & & & & \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ & & & & & & \end{pmatrix}$$

if k -th col is not a pivot col, then add \vec{e}_k^T after row $\# k-1$. The new matrix is in echelon form.

i.e. can complete rows to a basis of \mathbb{R}^n
by adding standard basis vectors in right spots.

Claim: the same vectors that complete rows of \mathbf{A} to a basis also complete the rows of \mathbf{A}' to a basis.

Suppose v_1, v_2, \dots, v_r L.F. in \mathbb{R}^n .

$$\mathbf{A} = \begin{pmatrix} v_1^T \\ \vdots \\ v_r^T \end{pmatrix} \quad \begin{array}{l} \text{i-th row of } \mathbf{A} \\ \text{is } v_i \end{array}$$

complete rows of \mathbf{A}' to basis by adding v_{r+1}, \dots, v_n of \mathbb{R}^n

Let $\tilde{\mathbf{A}} := \begin{pmatrix} v_1^T \\ \vdots \\ v_r^T \\ v_{r+1}^T \\ \vdots \\ v_n^T \end{pmatrix}$

Let \tilde{A}_{re} be A_{re} with v_{r+1}^T, \dots, v_n^T added as rows.

$\tilde{A}_{re} = E\tilde{A}$, E = product of elementary matrices

$$\tilde{A} = \underset{\substack{\downarrow \\ \text{inv}}}{E^{-1}} \underset{\substack{\downarrow \\ \text{inv}}}{\tilde{A}_e} \underset{\substack{\downarrow \\ \text{rows of } \tilde{A} \text{ form basis} \\ \text{of } \mathbb{R}^n}}{, \text{ so } \tilde{A} \text{ invertible.}}$$

8. Matrix of a linear map enhanced Change of coords

- For $A: \mathbb{R}^n \rightarrow \mathbb{R}^m$ linear, the matrix $[A]$ and A itself were viewed as the same
- For $\stackrel{\wedge}{A}: V \rightarrow W$, must be careful
general

Let V be a vector space, $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$
basis for V .

For each $\vec{v} \in V$, there is a unique
 n -tuple of numbers (x_1, \dots, x_n) s.t.

$$\vec{v} = x_1 \vec{b}_1 + \dots + x_n \vec{b}_n = \sum_{k=1}^n x_k \vec{b}_k$$

(x_1, \dots, x_n) are called the coordinates
of \vec{v} wrt \mathcal{B} .

$$[\vec{v}]_{\mathcal{B}} := \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \quad (\text{or } \mathbb{C}^n)$$

Note: the map $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$ is an isomorphism

In fact, it is the unique isomorphism s.t.

$$C: V \rightarrow \mathbb{R}^n$$

$$C(\vec{b}_i) = \vec{e}_i, i=1, \dots, n.$$

Def. Let $T: V \rightarrow W$ linear.

$A = \{\vec{a}_1, \dots, \vec{a}_n\}$ basis for V

$B = \{\vec{b}_1, \dots, \vec{b}_m\}$ basis for W

The matrix of T wrt A, B is the matrix $[T]_{B|A}$ whose k -th col is

$$[T\vec{a}_k]_B$$

$$\begin{aligned} \text{Let } \vec{v} \in V. \quad \vec{v} &= [\vec{v}]_{A,1} \vec{a}_1 \\ &\quad + \dots + [\vec{v}]_{A,n} \vec{a}_n \\ &= \sum_{k=1}^n [\vec{v}]_{A,k} \vec{a}_k \\ T\vec{v} &= \sum_{k=1}^n [\vec{v}]_{A,k} T\vec{a}_k \end{aligned}$$

$$[T\vec{v}]_B = \left[\sum_{k=1}^n [\vec{v}]_{A,k} T\vec{a}_k \right]_B$$

$$= \sum_{k=1}^n [\vec{v}]_{\mathcal{A}, k} [T \vec{a}_k]_{\mathcal{B}}$$

$$= [T]_{\mathcal{B} \mathcal{A}} [\vec{v}]_{\mathcal{A}}$$

$$[T\vec{v}]_{\mathcal{B}} = [T]_{\mathcal{B} \mathcal{A}} [\vec{v}]_{\mathcal{A}}$$

Suppose $T_1: X \rightarrow Y$, $T_2: Y \rightarrow Z$ linear maps
 $\mathcal{A}, \mathcal{B}, \mathcal{C}$ bases for X, Y, Z resp. $\mathcal{A} = \{a_1, \dots, a_e\}$

$$[T_2 T_1]_{\mathcal{C}} = [T_2]_{\mathcal{C} \mathcal{B}} [T_1 a_i]_{\mathcal{B}}$$

so i-th col of $T_2 T_1$ is exactly

$$[T_2]_{\mathcal{C} \mathcal{B}} \text{ times } [T_1 a_i]_{\mathcal{B} \mathcal{A}}$$

||
i-th col of $[T_1]_{\mathcal{B} \mathcal{A}}$

$$\Rightarrow \boxed{[T_2 T_1]_{\mathcal{C} \mathcal{A}} = [T_2]_{\mathcal{C} \mathcal{B}} [T_1]_{\mathcal{B} \mathcal{A}}} \quad (*)$$

8.3 Change of coords

$\mathcal{A} = \{\vec{a}_1, \dots, \vec{a}_n\}$, $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ bases of V .

Let $I: V \rightarrow V$ be the identity.

$[I]_{\mathcal{B}\mathcal{A}}$ is not necessarily the identity matrix.
if $\mathcal{B} = \mathcal{A}$, then it is, but otherwise no.

$[I]_{\mathcal{B}\mathcal{A}}$ takes a vector in \mathcal{A} coords and
produces coords in \mathcal{B} .

$[I]_{\mathcal{A}\mathcal{B}}$ has $[\vec{a}_k]_{\mathcal{B}}$ as its k -th col.

Obs: $[I]_{\mathcal{B}\mathcal{A}} = ([I]_{\mathcal{A}\mathcal{B}})^{-1}$ (apply *)

Ex (standard basis):

Let $V = \mathbb{R}^n$. $S = \{\vec{e}_1, \dots, \vec{e}_n\}$

$\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$

$[I]_{S\mathcal{B}} \rightarrow k$ -th col is $[I \vec{b}_k]_S = [\vec{b}_k]_S$
 $= \vec{b}_k$

$[I]_{S\mathcal{B}}$ is the matrix $B = [\vec{b}_1, \dots, \vec{b}_n]$

$$[I]_{BS} = B^{-1}$$

$$\text{e.g. } B = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

$$[I]_{SBS} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix} \in \mathbb{R}^2$ has coordinates

$$(1, 0) \text{ wrt } B$$

$$[I]_{SBS} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 0 \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

In \mathbb{R}^n , the coordinates of any vector wrt standard basis are just the entries of the vector itself

$$[I]_{BS} = [I]_{SBS}^{-1} = \frac{1}{3} \begin{pmatrix} -1 & 2 \\ 2 & -1 \end{pmatrix}$$

$$\frac{1}{3} \begin{pmatrix} -1 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{3} \left(\begin{pmatrix} -1 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right) \\ = \begin{pmatrix} 1/3 \\ 1/3 \end{pmatrix}$$

$$\text{i.e. } \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Ex: P_1

$$A = \{1, 1+x\}, B = \{1+2x, 1-2x\}$$

$$S = \{1, x\}$$

to compute $[I]_{Bd}$, use $[I]_{Bd} = [I]_{BS} [I]_{Sl}$

$$[I]_{Sl} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} =: A \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1}$$

$$[I]_{SB} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} =: B \quad = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, B^{-1} = \frac{1}{4} \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}$$

$$[I]_{Bd} = [I]_{BS} [I]_{Sl} = B^{-1}A = \frac{1}{4} \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

$$[I]_{LB} = A^{-1}B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix}$$

$$\underline{\text{Ex.}} \quad V = \mathbb{P}_3 \quad S = \{1, x, x^2, x^3\}$$

$$T: \mathbb{P}_3 \rightarrow \mathbb{P}_3$$

$$T(p) = p'$$

$$T(1) = 0$$

$$T(x) = 1$$

$$T(x^2) = 2x$$

$$T(x^3) = 3x^2$$

$$[T]_{SS} = \begin{pmatrix} 1 & x & x^2 & x^3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{matrix} 1 \\ x \\ x^2 \\ x^3 \end{matrix}$$

$$\text{Let } p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$$

$$[p]_S = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

$$[T(p)]_S = [T]_{SS} [p]_S = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

$$= \begin{pmatrix} a_1 \\ 2a_2 \\ 3a_3 \\ 0 \end{pmatrix} \begin{matrix} 1 \\ x \\ x^2 \\ x^3 \end{matrix} \rightarrow a_1 + 2a_2x + 3a_3x^2 + 0x^3$$

$$\ker T? \quad \text{ran } T?$$

Matrix of a transformation and change of coords

$T: V \rightarrow W$ linear

$\mathcal{B}, \tilde{\mathcal{B}}$ bases of V

$\mathcal{B}, \tilde{\mathcal{B}}$ bases of W

$$[T]_{\mathcal{B}\tilde{\mathcal{B}}} = [I]_{\tilde{\mathcal{B}}\tilde{\mathcal{B}}} [T]_{\mathcal{B}\mathcal{B}} [I]_{\mathcal{B}\tilde{\mathcal{B}}}$$

$$T: \underset{\mathcal{B}}{V} \rightarrow \underset{\mathcal{B}}{W} \quad S := [\cdot]_{\mathcal{B}}: V \rightarrow \mathbb{R}^n \text{ iso}$$

$$R := [\cdot]_{\mathcal{B}}: W \rightarrow \mathbb{R}^m \text{ iso}$$

$$R \circ T \circ S^{-1}: \mathbb{R}^n \rightarrow \mathbb{R}^m$$

i.e. $R T S^{-1}$ is an $m \times n$ matrix

Rank thm $\Rightarrow \dim \ker A + \dim \text{Ran } A = n$

$$\text{Note: } T: V \rightarrow W, \quad S: U \xrightarrow{\cong} V$$

Then $\ker T \cong \ker TS$

$\text{ran } T \cong \text{ran } TS$

Let v_1, \dots, v_r be a basis for $\ker T$.

$Sv_1, \dots, S^{-1}v_r$ each lie in $\ker TS$

They are lin. indp.

Let $u \in \ker TS$. Then $TSu = \vec{0}$
 $T(Su) = \vec{0}$

$Su \in \ker T$. $Su = \alpha_1 v_1 + \dots + \alpha_r v_r$

$u = \alpha_1 S^{-1}v_1 + \dots + \alpha_r S^{-1}v_r$

$u \in \text{span } \{S^{-1}v_i\}_{i=1, \dots, r}$

Do similar thing for range.

Conclude $\dim \ker A = \dim \ker T$

$\dim \text{ran } T = \dim \text{Ran } A$.

So rank-nullity theorem works for general
 $T: V \rightarrow W$, W, V f.d. vs

$\mathcal{L} = \{\vec{a}_1, \dots, \vec{a}_n\}$ $T: V \rightarrow V$ linear

$[T]_{\mathcal{L}\mathcal{L}}$ same basis for "inputs" and "outputs"

$\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ another basis

$$[T]_{\mathcal{B}\mathcal{B}} = [I]_{\mathcal{L}\mathcal{L}} [T]_{\mathcal{L}\mathcal{L}} [I]_{\mathcal{L}\mathcal{B}}$$

$$Q := [I]_{\mathcal{L}\mathcal{B}}$$

$$[T]_{\mathcal{B}\mathcal{B}} = Q^{-1} [T]_{\mathcal{L}\mathcal{L}} Q$$

Def: A matrix A is similar to a matrix B
if there is an invertible Q s.t.

$$A = Q^{-1} B Q.$$

Note: similarity is an equivalence relation.

1) A is similar to itself

2) $A \sim B \Rightarrow B \sim A$

3) $A \sim B, B \sim C \Rightarrow A \sim C$

Similar matrices can be thought of as different
matrix representations of the same operator T .

