

A transformation T from a set X to a set Y is a rule that assigns to each $x \in X$ an output $y = T(x) \in Y$. (we write $T: X \rightarrow Y$)

X is called the domain. Y is the target space or codomain.

Def: Let V, W be vector spaces over a field \mathbb{F} .
 $T: V \rightarrow W$ is linear if

$$1) \quad T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}) \quad \forall \vec{u}, \vec{v} \in V$$

$$2) \quad T(\alpha \vec{v}) = \alpha T(\vec{v}) \quad \forall \vec{v} \in V, \quad \forall \alpha \in \mathbb{F}.$$

equivalently,

$$T(\alpha \vec{u} + \beta \vec{v}) = \alpha T(\vec{u}) + \beta T(\vec{v}) \quad \forall \vec{u}, \vec{v} \in V$$
$$\quad \quad \quad \forall \alpha, \beta \in \mathbb{F}$$

Ex: $V = \mathbb{P}_n$ (polynomials of degree $\leq n$)

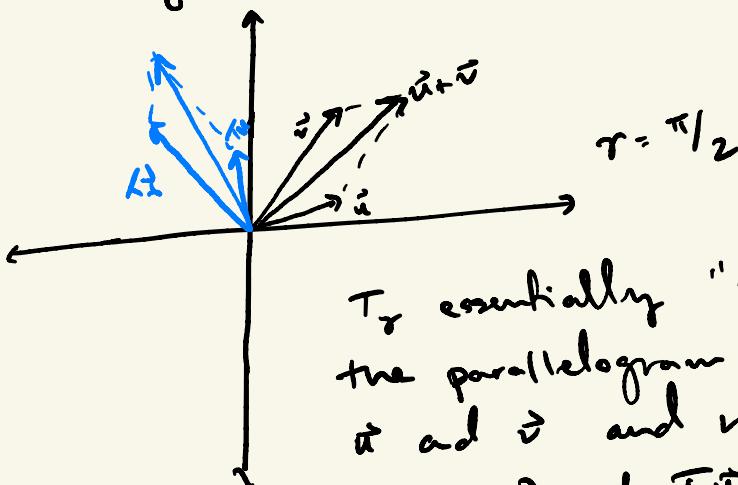
$W = \mathbb{P}_{n-1}$

Define $T(p) = p'$.

Ex: $V = W = \mathbb{R}^2$.

Let $T_\gamma: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be rotation by γ radians counterclockwise.

Why is T_γ linear?



T_γ essentially "picks up" the parallelogram formed by \vec{u} and \vec{v} and rotates it, so $T(\vec{u} + \vec{v})$ and $T\vec{u} + T\vec{v}$ end up being the same.

Also not hard to see $\alpha T\vec{u} = T(\alpha \vec{u})$

Ex: $V = W = \mathbb{R}^2$.

Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be reflection about x -axis.

$$T \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right) = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}.$$

Can check algebraically that T is linear.

Ex: Recall that \mathbb{R} is a vector space over \mathbb{R} itself. (A bit weird since vectors and scalars are one and the same)

Suppose $T: \mathbb{R} \rightarrow \mathbb{R}$ is linear.

Let $x \in \mathbb{R}$. Then $T(x) = T(x \cdot 1) = xT(1)$.

Let $a = T(1)$. Then $T(x) = ax$.

So T is the map that scales by a .

3.2 Linear transformations $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$.

\mathbb{R}^n has standard basis vectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

n-th spot

Let $\vec{a}_i = T(e_i)$, $i=1, \dots, n$.

Claim: The values of \vec{a}_i determine T completely.

Pf: Let $\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Then $\vec{x} = x_1 \vec{e}_1 + \dots + x_n \vec{e}_n$.

$$\begin{aligned} T(\vec{x}) &= T(x_1 \vec{e}_1 + \dots + x_n \vec{e}_n) \\ &= x_1 T(\vec{e}_1) + \dots + x_n T(\vec{e}_n) \\ &= x_1 \vec{a}_1 + \dots + x_n \vec{a}_n \end{aligned}$$

Define $A = [\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n]$ (\vec{a}_k forms the k -th column)

" A contains all information about T "

Write A as

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

with this notation,

$$\vec{a}_k = \begin{pmatrix} a_{1,k} \\ a_{2,k} \\ \vdots \\ a_{m,k} \end{pmatrix}$$

How should we define multiplication of a matrix and a vector?

We want $A\vec{x} \rightarrow T(\vec{x})$

$$T(\vec{x}) = \sum_{k=1}^m x_k \vec{a}_k = x_1 \begin{pmatrix} a_{1,1} \\ \vdots \\ a_{m,1} \end{pmatrix} + x_2 \begin{pmatrix} a_{1,2} \\ \vdots \\ a_{m,2} \end{pmatrix} + \cdots + x_n \begin{pmatrix} a_{1,n} \\ \vdots \\ a_{m,n} \end{pmatrix} \quad (*)$$

This leads to define $A\vec{x}$ as the thing on the right hand side.

multiply each column of A by the corresponding entry of \vec{x} and add them up

$$\text{Ex: } \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 2 \end{pmatrix} + 3 \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 14 \\ 10 \end{pmatrix}.$$

Notice in (*) that if we collect the terms then the k -th entry of $A\vec{x}$ is

$$a_{k,1}x_1 + a_{k,2}x_2 + \dots + a_{k,n}x_n$$

$$= \sum_{j=1}^n a_{k,j}x_j \quad (k=1, \dots, m)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 \\ 3 \cdot 1 + 2 \cdot 2 + 1 \cdot 3 \end{pmatrix}$$

$$= \begin{pmatrix} 14 \\ 10 \end{pmatrix}$$

3.3 linear maps and generating sets

Prop: Let $T: V \rightarrow W$ be linear. Then T is completely defined by its values on a generating set. Put differently, if $T_1, T_2: V \rightarrow W$ agree on a generating set, then $T_1 = T_2$ (they agree everywhere).

Pf: ... \square

Conclusions:

- To get the matrix of $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$, form the matrix with columns $\vec{a}_k = T\vec{e}_k$.
- If we have the matrix A of T , then $T(\vec{x})$ can be computed as

$$T(\vec{x}) = A\vec{x}$$

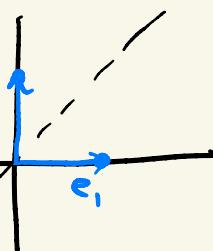
↳ can compute
"col. by word" or "row by column"

The matrix of $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$ is sometimes denoted $[T]$. Sometimes, we drop the brackets and conflate T w/ its matrix.

Sometimes write $T\vec{u}$ instead of $T(\vec{u})$.

Rule: In an expression like $A\vec{x}$, # of cols of A must match # of entries in \vec{x} .

Q: Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be reflection about the line $x_1 = x_2$ (i.e. the line $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 = x_2\}$). Find the matrix of T .



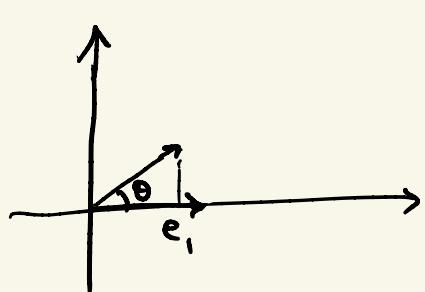
$$T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$T\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\text{so } [T] = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

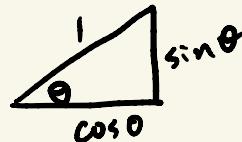
$$\begin{aligned} \text{So } T\begin{pmatrix} x \\ y \end{pmatrix} &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 0 \\ 1 \end{pmatrix} + y \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} y \\ x \end{pmatrix} \checkmark \end{aligned}$$

Q. Let $\theta \in \mathbb{R}$ and T_θ be rotation CCW by θ .
what is $[T_\theta]$?

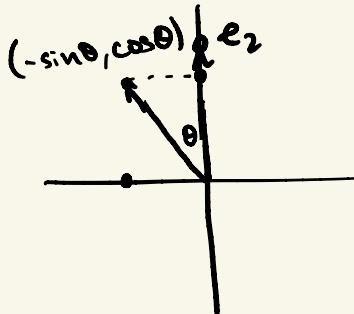


$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

$$T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$$



$$[T_\theta] = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$



$$[T_{\pi/4}] = \begin{pmatrix} \cos \pi/4 & -\sin \pi/4 \\ \sin \pi/4 & \cos \pi/4 \end{pmatrix}$$

$$= \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

Linear Transformations as a vector space

$T: V \rightarrow W$ linear, α scalar

Can define αT to be the map given by

$$(\alpha T)(\vec{v}) = \alpha (T\vec{v}) \quad \forall \vec{v} \in V$$

can check that αT defined this way is also linear:

$$(\alpha T)(\beta_1 \vec{v}_1 + \beta_2 \vec{v}_2)$$

$$\stackrel{\text{def}}{=} \alpha \left(T(\beta_1 \vec{v}_1 + \beta_2 \vec{v}_2) \right)$$

$$\begin{matrix} \leftarrow \\ T \text{ is linear} \end{matrix} = \alpha \left(\beta_1 T \vec{v}_1 + \beta_2 T \vec{v}_2 \right)$$

$$= \alpha \beta_1 T \vec{v}_1 + \alpha \beta_2 T \vec{v}_2$$

$$= \beta_1 (\alpha T \vec{v}_1) + \beta_2 (\alpha T \vec{v}_2)$$

Given $T_1, T_2: V \rightarrow W$ both linear, can
define $T_1 + T_2: V \rightarrow W$ by

$$(T_1 + T_2)(\vec{v}) = T_1 \vec{v} + T_2 \vec{v}$$

$T_1 + T_2$ is also linear for similar reasons.

With these operations, the space
 $L(V, W)$ of all linear maps from $V \rightarrow W$
is itself a vector space!

P.F. tedious. \square

Composition of linear transformations and matrix
multiplication

we have defined multiplication of a matrix and
column.

Can extend this to define product of two
matrices.

Def. if b_1, b_2, \dots, b_r are the columns of B , then AB is defined to be the matrix

$$AB := \begin{bmatrix} | & | & | \\ Ab_1 & Ab_2 & \dots & Ab_r \\ | & | & | \end{bmatrix}$$

i.e. the k -th col is Ab_k

If we use the row-by-column rule, we find that

$$(AB)_{j,k} = (\text{row } j \text{ of } A) \cdot (\text{column } k \text{ of } B)$$

$$= \sum_l a_{j,l} b_{l,k}$$

Notice that for AB to be well-defined, the size of a row in A must match the size of a col in B .

$$\begin{array}{cc} A & B \\ m \times n & n \times r \end{array} \longrightarrow \begin{array}{c} AB \\ m \times r \end{array}$$

dimensions must match

$$\begin{aligned}
 & \underline{\text{Ex:}} \quad \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 1 & 1 \\ 3 & 3 \end{pmatrix} \quad \xrightarrow{\text{Result is } 2 \times 2} \\
 & \quad \begin{pmatrix} 1 \cdot 5 + 2 \cdot 1 + 3 \cdot 3 & 1 \cdot 6 + 2 \cdot 1 + 3 \cdot 3 \\ 4 \cdot 5 + 5 \cdot 1 + 6 \cdot 3 & 4 \cdot 6 + 5 \cdot 1 + 6 \cdot 3 \end{pmatrix}
 \end{aligned}$$

why is multiplication defined like this?

Suppose $T_1: \mathbb{R}^n \rightarrow \mathbb{R}^m$, $T_2: \mathbb{R}^r \rightarrow \mathbb{R}^n$ linear

- Define $T = T_1 \circ T_2$ by

$$(T_1 \circ T_2)(x) = T_1(T_2(x))$$

$$\mathbb{R}^r \xrightarrow{T_2} \mathbb{R}^n \xrightarrow{T_1} \mathbb{R}^m$$

- check that $T_1 \circ T_2$ is a linear map from \mathbb{R}^r to \mathbb{R}^m .

- what is the matrix of $T = T_1 \circ T_2$?

Let A be the matrix of T_1 , B the matrix of T_2

By definition the columns of the matrix of T are

$$T(\vec{e}_1), \dots, T(\vec{e}_r)$$

$$\rightarrow T(\vec{e}_k) = (T_1 \circ T_2)(\vec{e}_k)$$

$$= T_1(T_2(\vec{e}_k))$$

$$= T_1(B\vec{e}_k) \quad \begin{matrix} \text{multiply } B \text{ by} \\ \vec{e}_k \text{ extracts} \\ k\text{-th column} \end{matrix}$$

$$= T_1(\vec{b}_k)$$

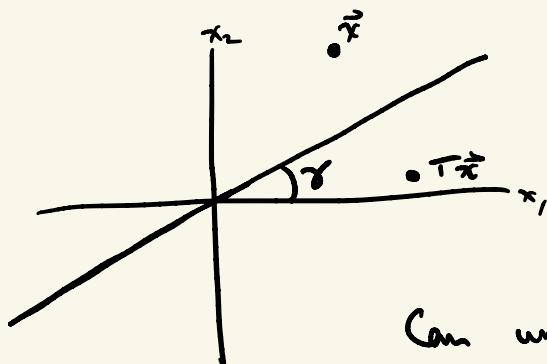
$$= A\vec{b}_k.$$

So the columns of T 's matrix

$$\text{are } A\vec{b}_1, \dots, A\vec{b}_r!$$

In other words, matrix multiplication is defined so that the matrix of $T_1 \circ T_2$ is simply AB .

Ex: $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ reflection about $x_1 = 3x_2$



Find $[T]$

↳ the matrix of T

Can write T as composition of simpler maps.

Let T_0 = reflection across x_1 -axis.

Let γ = angle of line to $+x_1$ -axis

$$T = R_\gamma \circ T_0 \circ R_{-\gamma} \quad (\text{note the order})$$

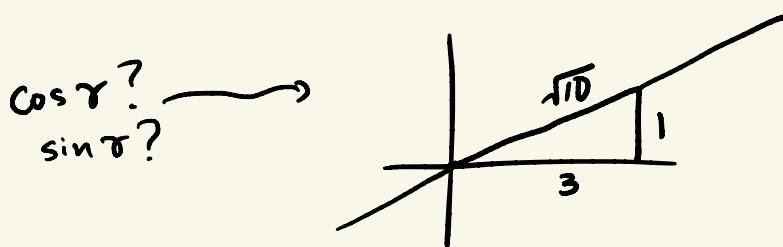
By discussion above,

$$[T] = [R_\gamma] [T_0] [R_{-\gamma}]$$

$$[T_0] = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$R_\gamma = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix}$$

$$R_{-\gamma} = \begin{pmatrix} \cos \gamma & \sin \gamma \\ -\sin \gamma & \cos \gamma \end{pmatrix}$$



$$\cos \gamma = \frac{3}{\sqrt{10}}, \quad \sin \gamma = \frac{1}{\sqrt{10}}$$

$$\begin{aligned}
 [T] &= \frac{1}{\sqrt{10}} \begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{10}} \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix} \\
 &= \frac{1}{10} \begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix} \\
 &= \frac{1}{10} \begin{pmatrix} 3 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix} \\
 &= \frac{1}{10} \begin{pmatrix} 8 & 6 \\ 6 & -8 \end{pmatrix} = \begin{pmatrix} 4/5 & 3/5 \\ 3/5 & -4/5 \end{pmatrix}
 \end{aligned}$$

Properties

$$1) A(BC) = (AB)C \quad \text{associative}$$

provided one side
is defined

$$2) A(B+C) = AB + AC$$

$$(A+B)C = AC + BC$$

provided one side is defined

$$3) \neg(A \cdot B) = (\neg A)B = A(\neg B)$$

But, $AB \neq BA$ usually!

$$A = m \times n \quad \rightsquigarrow AB \text{ makes sense}$$

$$B = n \times r \quad BA \text{ is not even defined.}$$

Even if A and B are both $n \times n$,
 $AB \neq BA$ most of the time.

Fact: $(AB)^T = B^T A^T$

check this (if you feel like it)

Def. Let $A = n \times n$ (square matrix).

The trace of A is

$$\text{tr } A = \sum_{k=1}^n a_{k,k}$$

i.e. sum of the diagonal elements

Thm: Let $A = m \times n$, $B = n \times m$. Then

$$\text{tr}(AB) = \text{tr}(BA).$$

Pf: $T_1 : M_{n \times m} \rightarrow \mathbb{R}$

$$T_2 : M_{n \times m} \rightarrow \mathbb{R}$$

$$T_1(X) = \text{tr}(AX)$$

$$T_2(X) = \text{tr}(XA)$$

Let $X_{i,j}$ be the $n \times m$ matrix = 0 everywhere except at i,j entry, where it is 1.

$$T_1(X_{i,j}) = \text{tr}(AX_{i,j}) \rightarrow \begin{pmatrix} \dots & \overset{j}{\underset{\downarrow}{1}} \\ \dots & 0 \\ \dots & 0 \\ \dots & 1 \\ \dots & 0 \end{pmatrix}$$

$$= a_{j,i} \cdot$$

$$A\vec{e}_i = \vec{a}_i$$

$$; T_2(X_{i,j}) = \text{tr}(X_{i,j}A)$$

$$\begin{pmatrix} & & \\ & 1 & \\ & & \end{pmatrix} \vec{a}_k = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ a_{j,k} \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & \dots & \vec{a}_i & \dots & 0 \\ 0 & 0 & \dots & & \dots & 1 \\ \vdots & \vdots & \ddots & & & \vdots \\ 0 & 0 & \dots & a_{i,i} & \dots & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & \dots & \vec{a}_i & \dots & 0 \\ 0 & 0 & \dots & & \dots & 1 \\ \vdots & \vdots & \ddots & & & \vdots \\ 0 & 0 & \dots & a_{i,i} & \dots & 0 \end{pmatrix}$$

$$X_{i,j} A = \begin{pmatrix} & & & \\ & 1 & 2 & 3 & \\ & \vdots & \vdots & \vdots & \\ a_{j,1} & a_{j,2} & \dots & a_{j,n} & \end{pmatrix}$$

$$\text{tr}(X_{i,j}A) = a_{j,i} \cdot \quad \square$$

Invertible transformations

V = vector space

$I_V: V \rightarrow V$ is the map

$$I_V(\vec{x}) = \vec{x} \quad \forall \vec{x} \in V.$$

Note I_V is linear.

I_V is called the identity transformation of V .

often simply write I

• $I: \mathbb{R}^n \rightarrow \mathbb{R}^n$. The matrix of I

$$I = I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

for any A , $AI = A$, $I A = A$
(when defined)

Def. Let $A: V \rightarrow W$ be linear. A is left-invertible
if there is some $B: W \rightarrow V$ s.t.

$$BA = I_V$$

A is right-invertible if there is some $C: W \rightarrow V$
s.t.

$$AC = I_W$$

- generally, left/right inverses are not unique

Def: $A: V \rightarrow W$ is invertible if it is both left and right invertible.

Thm: If $A: V \rightarrow W$ is invertible, then its left and right inverses B and C are unique and coincide.

Corollary: $A: V \rightarrow W$ is invertible iff there is a unique linear transf $A^{-1}: W \rightarrow V$ s.t.

$$A^{-1}A = I_V, \quad AA^{-1} = I_W.$$

A^{-1} is called the inverse of A .

Pf of thm: Suppose $BA = I$, $AC = I$.

$$BAC = B(AC) = BI = B.$$

Or, off,

$$BAC = (BA)C = IC = C.$$

$$\text{So } B = C.$$

If $B, A = I$ also, then above tells us $B_1 = C$,
so $B = B_1$. Similarly for C . \square

Def. A matrix is invertible if the corresponding linear transformation is.

Ex: 1) I is invertible. $I^{-1} = I$.

2) rotation R_γ is invertible

$$(R_\gamma)^{-1} = R_{-\gamma}.$$

can also check this by matrix mult.

3) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is left invertible

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \frac{1}{2} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = I_1$$

$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is not right invertible since it has multiple left inverses

$$(2 - 1) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = (2 - 1) - (1)$$

why does this imply $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is not right inv?

Rank: we will show later that an invertible matrix must be square ($n \times n$) and that if A is square and has either a left inv or right inv, then A is invertible.

Thm: If A and B are invertible, and AB is defined, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}.$$

PF:

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A\mathbb{I}A^{-1}$$

$$= AA^{-1} = \mathbb{I}.$$

Also $(B^{-1}A^{-1})(AB) = B^{-1}\mathbb{I}B = B^{-1}B = \mathbb{I}.$ \square

Rank: It's possible that AB is invertible, but A and B are not individually.

e.g.
$$\begin{matrix} 2 \times 3 & 3 \times 2 & 2 \times 2 \\ \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} & \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ A & B & AB \end{matrix}$$

Thm 6.5 (Inverse of A^T)

If A is invertible, then so is A^T , and

$$(A^T)^{-1} = (A^{-1})^T.$$

Pf. $(A^{-1})^T A^T = (AA^{-1})^T = I^T = I.$

$$A^T (A^{-1})^T = (A^{-1} A)^T = I^T = I. \quad \square$$

Def. An isomorphism is an invertible linear transformation.

If $A: V \rightarrow W$ is an isomorphism, V and W are called isomorphic (write $V \cong W$)

If V and W are isomorphic, they are "the same" in some sense.

Thm: Let $A: V \rightarrow W$ be an isomorphism.

Let $\vec{v}_1, \dots, \vec{v}_n$ be a basis in V . Then

$A\vec{v}_1, \dots, A\vec{v}_n$ is a basis in W .

Pf:

linear independence:

$$\beta_1(A\vec{v}_1) + \dots + \beta_n(A\vec{v}_n) = \vec{0} \in W$$

$$\text{linearity} \Rightarrow A(\beta_1\vec{v}_1 + \dots + \beta_n\vec{v}_n) = \vec{0}$$

A has an inverse A^{-1}

$$A^{-1}(A(\beta_1\vec{v}_1 + \dots + \beta_n\vec{v}_n)) = A^{-1}\vec{0}$$

$$= I_V(\beta_1\vec{v}_1 + \dots + \beta_n\vec{v}_n) = 0$$

$$\Rightarrow \beta_1\vec{v}_1 + \dots + \beta_n\vec{v}_n = 0$$

$$\Rightarrow \beta_i = 0 \ \forall i.$$

spanning: Let $\vec{w} \in W$. Then $A^{-1}\vec{w} \in V$.

There are $\alpha_i \in F$ s.t.

$$\alpha_1\vec{v}_1 + \dots + \alpha_n\vec{v}_n = A^{-1}\vec{w}.$$

$$\Rightarrow A(q_1\vec{v}_1 + \dots + q_n\vec{v}_n) = \vec{w}$$

$$\Rightarrow q_1A\vec{v}_1 + \dots + q_nA\vec{v}_n = \vec{w}. \quad \square$$

Thm: Let $A: V \rightarrow W$ be linear. If $\vec{v}_1, \dots, \vec{v}_n$ is a basis for V , and $\vec{w}_1, \dots, \vec{w}_n$ is a basis for W , and $A\vec{v}_k = \vec{w}_k$ for $k=1, \dots, n$, then A is an isomorphism.

Pf: Define the linear map

$$B: W \rightarrow V \text{ by } B(\vec{w}_k) = \vec{v}_k, k=1, \dots, n.$$

This map is completely determined by this assignment since $\vec{w}_1, \dots, \vec{w}_n$ is a basis.

Check that $B = A^{-1}$. \square

e.g. $\rightarrow A: \mathbb{R}^{n+1} \rightarrow \mathbb{P}_n^{\mathbb{R}}$

$$A(\vec{e}_1) = 1, \quad A(\vec{e}_2) = t, \quad \dots, \quad A(\vec{e}_{n+1}) = t^n$$

A is an iso. by the above

• set $n = 2$

$$A \begin{pmatrix} 1 \\ t \\ 1 \end{pmatrix} = 1 + t + t^2$$

2) Let V be a v.s. over \mathbb{R} with basis

$\vec{v}_1, \dots, \vec{v}_n$. Define

$$A: \mathbb{R}^n \rightarrow V$$

$$A \vec{e}_k = \vec{v}_k.$$

A is an iso.

$$\text{so } V \cong \mathbb{R}^n.$$

