

Def. The dot product of $x, y \in \mathbb{R}^n$ is

$$x^T y = x_1 y_1 + \dots + x_n y_n$$
$$(x \cdot y)$$

this is an example of an inner product

$$\bullet x^T y = y^T x$$

$$(x+y)^T z = x^T z + y^T z$$

$$(c\vec{x})^T \vec{y} = c(\vec{x}^T \vec{y})$$

$$\bullet \forall x \in \mathbb{R}^n, x^T x \geq 0.$$

$$x^T x = 0 \iff x = \vec{0}.$$

Def. The length or norm of $\vec{x} \in \mathbb{R}^n$ is

$$\|\vec{x}\| = \sqrt{x^T x} = \sqrt{x_1^2 + \dots + x_n^2}$$

Def. the distance between $\vec{x}, \vec{y} \in \mathbb{R}^n$ is

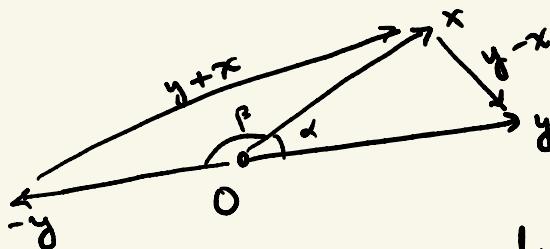
$$d(x, y) = \|\vec{x} - \vec{y}\|$$

Def. A unit vector is a vector \vec{x} s.t. $\|\vec{x}\| = 1$.

Note: $\frac{\vec{x}}{\|\vec{x}\|}$ is always a unit vector ($\vec{x} \neq \vec{0}$).

Def. \vec{x}, \vec{y} are orthogonal or perpendicular if

$$\vec{x}^T \vec{y} = 0.$$



x and y are perpendicular if

$$\|y + x\| = \|y - x\|$$

$$\iff (y + x)^T (y + x) = (y - x)^T (y - x)$$

$$\iff y^T y + 2x^T y + x^T x = y^T y - 2x^T y + x^T x$$

$$\iff 4x^T y = 0 \iff x^T y = 0.$$

Note: $\vec{0}^T \vec{x} = 0 \forall \vec{x}$, so 0 is orthogonal to every vector.

Def. Let $W \subseteq \mathbb{R}^n$ be a subspace. The orthogonal complement of W is

$$W^\perp = \{v \in \mathbb{R}^n \mid v^T w = 0 \text{ for } w \in W\}$$

W^\perp is a subspace of \mathbb{R}^n .

Prop: A matrix. Let $W = \text{Row } A$ ($\text{col } A$). Then

$$W^\perp = \ker(A^T).$$

PF: $A = (v_1 \ \dots \ v_m)$

Note that x is perpendicular to W iff it's perpendicular to a spanning list of W .

$$A^T = \begin{pmatrix} v_1^T \\ \vdots \\ v_m^T \end{pmatrix}$$

$$A^T \vec{x} = \begin{pmatrix} v_1^T x \\ \vdots \\ v_m^T x \end{pmatrix} = \vec{0} \text{ iff } x \perp v_i \text{ for each } v_i \\ i = 1, \dots, m.$$

□

Prop. Let $W \subseteq \mathbb{R}^n$ be a subspace.

Then $\dim W + \dim W^\perp = n$.

PF. Let v_1, \dots, v_m be a basis for W .
Let $A = (v_1 \dots v_m)$.

So $\text{Ran } A = W$.

$$\text{Rank-nullity} \Rightarrow \dim \text{Ran } A^T + \dim \text{Ker } A^T = n$$

rank \leftarrow $\dim \text{Ran } A$

$$\Rightarrow \dim W + \dim W^\perp = n. \quad \square$$

Prop. $(W^\perp)^\perp = W$.

If $x \in W$, and $y \in W^\perp$, then $x^T y = 0$, so

$x \in (W^\perp)^\perp$, so $W \subseteq (W^\perp)^\perp$.

$$\dim W^\perp + \dim (W^\perp)^\perp = n \quad \dim W + \dim W^\perp = n$$

$$\begin{aligned} \dim (W^\perp)^\perp &= n - \dim W^\perp \\ &= \dim W \end{aligned}$$

So W is a full-dimension subspace of $(W^\perp)^\perp$.

\square

Theorem (orthogonal decomposition)

Let W be a subspace of \mathbb{R}^n . Let $x \in \mathbb{R}^n$.

Then x can be written uniquely as

$x = x_W + x_{W^\perp}$, where $x_W \in W$, $x_{W^\perp} \in W^\perp$.

(i.e. W, W^\perp is a basis of subspaces for \mathbb{R}^n)

orthogonal $\xrightarrow{\text{decomp.}}$

Pf: lin indp:

Suppose $\vec{u} + \vec{v} = \vec{0}$, $\vec{u} \in W$, $\vec{v} \in W^\perp$.

Then $\vec{u} = -\vec{v} \in W^\perp$.

So $\vec{u} \in W^\perp$ and $\vec{u} \in W$.

$\Rightarrow \vec{u}^T \vec{u} = 0 \Rightarrow \vec{u} = 0 \Rightarrow \vec{v} = 0$.

spanning:

Let v_1, \dots, v_m be a basis of W .

v_{m+1}, \dots, v_n basis of W^\perp .

Then v_1, v_2, \dots, v_n are lin indp, so they form a basis for \mathbb{R}^n . Any \vec{x} can be written

$$\vec{x} = \underbrace{c_1 v_1 + \dots + c_m v_m}_{\in W} + \underbrace{c_{m+1} v_{m+1} + \dots + c_n v_n}_{\in W^\perp}$$

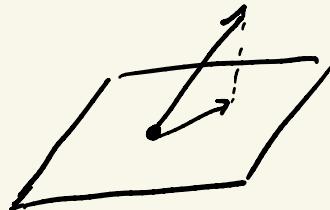
□

$$\text{Ran}(A)^\perp = \ker(A^T)$$

$$\text{Ran}(A^T)^\perp = \ker(A)$$

$$\text{Ran}(A^T) = \ker(A)^\perp$$

$$\text{Ran}(A) = \ker(A^T)^\perp$$



Thm: $A = \text{max. } W = \text{Ran}(A), x \in \mathbb{R}^m.$

Then

$$A^T A \vec{c} = A^T \vec{\pi} \quad (*)$$

is consistent in C , and $x_w = Ac$ for any sol'n c .

Pf: Let $x = x_w + x_{w^\perp}$ be the orthogonal decom-
 $x_w \in \text{Ran}(A)$ by definition, so $Ac = x_w$ for
some \vec{c} .

$$x - x_w \in \text{Ran}(A)^\perp = W^\perp = \ker(A^T), \text{ so}$$

$$A^T(x - x_w) = \vec{0}$$

$$\iff A^T(\vec{x} - A\vec{c}) = \vec{0}$$

$$\iff A^T A \vec{c} = A^T \vec{\pi}.$$

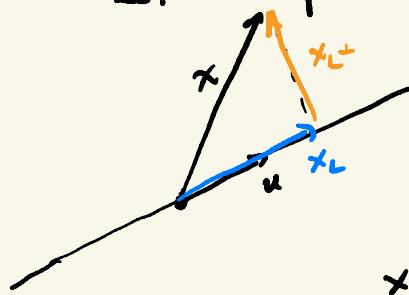
so $(*)$ is consistent.

And if \vec{c} satisfies $(*)$ then $x - A\vec{c} \in W^\perp$, so

$A\vec{c} = x_w$ by uniqueness. \square

Ex: (projection onto a line)

Let $L = \text{span}(u)$, $u \in \mathbb{R}^n$.



c is 1×1 (a scalar)

$$u^T u c = u^T x$$

$$c = \frac{u^T x}{u^T u} = \frac{u \cdot x}{u \cdot u}$$

$$x_L = cu = \frac{u \cdot x}{u \cdot u} u = \frac{u \cdot x}{\|u\|^2} u$$

$$= (u \cdot x) \frac{u}{\|u\|^2}$$

Prop: Let W be a subspace of \mathbb{R}^n . Define $T: \mathbb{R}^n \rightarrow \mathbb{R}^n$ by $T(x) = x_W$. Then

1. T is linear
2. $T(x) = x \iff x \in W$
3. $T(x) = 0 \iff x \in W^\perp$
4. $T \circ T = T$
5. $\text{Ran } T = W$.

Pf: 1) Let $x, y \in \mathbb{R}^n$.

$$x = x_W + x_{W^\perp}, \quad y = y_W + y_{W^\perp}$$

$$x+y = (x_W + y_W) + (x_{W^\perp} + y_{W^\perp})$$

$$\text{So } T(x+y) = x_w + y_w$$

similar for scaling

2) If $x \in W$, then $x = \underset{\in W}{\hat{x}} + \underset{\in W^\perp}{\overset{\wedge}{0}}$
 $x_w \in x \Rightarrow T(x) = x.$

If $T(x) = x$, then $x_w = x$, so $x_{w^\perp} = 0$
 $\Rightarrow x \in W.$

3) If $T(x) = 0$, then $x = \underset{\in W^\perp}{\overset{\wedge}{0}} + \underset{\in W^\perp}{\overset{\wedge}{x_w}}$
so $x \in W^\perp.$

If $x \in W^\perp$, then $x = \underset{\in W^\perp}{\overset{\wedge}{0}} + \underset{\in W^\perp}{\hat{x}} \Rightarrow T(x) = 0.$

4) $x = x_w + x_{w^\perp}$. $T(x) = x_w$
 $x_w = \underset{\in W}{\overset{\wedge}{x_w}} + \underset{\in W^\perp}{\overset{\wedge}{0}} \Rightarrow T^2(x) = T(x_w) = x_w.$
 $\Rightarrow T \circ T = T.$

5) $T(x) \in W \quad \forall x \in \mathbb{R}^n$, so $\text{Ran } T \subseteq W$.
 $T(x) = x \text{ for any } x \in W$, so $\text{Ran } T = W$.

Then (Cauchy-Schwarz) (skip?)

$$|x^T y| \leq \|x\| \|y\| \quad \forall x, y \in \mathbb{R}^n$$

PF. If $y = \vec{0}$, done. Suppose $y \neq \vec{0}$.

$$\underline{t \in \mathbb{R}} : 0 \leq \|\vec{x} - t\vec{y}\|^2 = (x - ty)^T (x - ty)$$

$$= \|x\|^2 - 2t(x^T y) + t^2 \|y\|^2$$

This is a quadratic in t minimized at

$$t = \frac{x^T y}{\|y\|^2}$$

$$\Rightarrow 0 \leq \|x\|^2 - 2 \frac{(x^T y)^2}{\|y\|^2} + \frac{(x^T y)^2}{\|y\|^2}$$

$$\Rightarrow 0 \leq \|x\|^2 \|y\|^2 - (x^T y)^2$$

$$\Rightarrow (x^T y)^2 \leq \|x\|^2 \|y\|^2$$

$$\Rightarrow |x^T y| \leq \|x\| \|y\|. \quad \square$$

$$\Rightarrow \|x+y\| \leq \|x\| + \|y\|. \quad \square$$

Prop: ^{Pythagorean form} If $x^T y = 0$ (x, y orthogonal), then
 $\|x+y\|^2 = \|x\|^2 + \|y\|^2$.

PF: $\|x+y\|^2 = \|x\|^2 + \|y\|^2 + 2x^T y$.

$$x^T y = 0. \quad \square$$

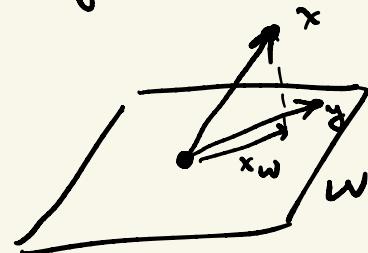
Thm Let ω be a subspace of \mathbb{R}^n , let $x \in \mathbb{R}^n$.

The pt in ω closest to x is x_ω .

$$\text{i.e. } \|x-y\| \geq \|x-x_\omega\| \quad \forall y \in \omega.$$

And if $\|x-y\| = \|x-x_\omega\|$, then $y = x_\omega$.

If: $x-y = \underbrace{x-x_\omega}_{\in \omega^\perp} + \underbrace{x_\omega-y}_{\in \omega}$



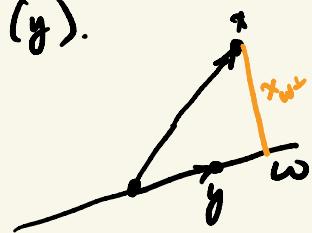
$$\begin{aligned} \|x-y\|^2 &= \|x-x_\omega\|^2 \\ &\quad + \|x_\omega-y\|^2 \\ &\geq \|x-x_\omega\|^2. \end{aligned}$$

And if $\|x-y\| = \|x-x_\omega\|$, we see $\|x_\omega-y\| = 0$,

$$\text{so } x_\omega = y. \quad \square$$

Let $x, y \in \mathbb{R}^n$, $y \neq \vec{0}$. Let $\omega = \text{span}(y)$.

$$x_\omega = \frac{x^T y}{\|y\|^2} y$$



$$\|x_{\omega^\perp}\|^2 = \|x - x_\omega\|^2$$

$$= \left\| x - \frac{x^T y}{\|y\|^2} y \right\|^2$$

$$= \left(x - \frac{x^T y}{\|y\|^2} y \right)^T \left(x - \frac{x^T y}{\|y\|^2} y \right)$$

$$= \|x\|^2 - \frac{2x^T y}{\|y\|^2} x^T y + \frac{(x^T y)^2}{\|y\|^4} \|y\|^2$$

$$= \|x\|^2 - \frac{(x^T y)^2}{\|y\|^2} \geq 0$$

$$\Rightarrow (x^T y)^2 \leq \|x\|^2 \|y\|^2$$

$$\Rightarrow |x^T y| \leq \|x\| \|y\|$$

Cauchy Schwarz
inequality

Prop (triangle inequality)

$$\|x+y\| \leq \|x\| + \|y\|$$

$$\text{NF: } \|x+y\|^2 = (x+y)^T (x+y)$$

$$= \|x\|^2 + 2x^T y + \|y\|^2$$

$$\leq \|x\|^2 + 2|x^T y| + \|y\|^2$$

$$\overset{CS}{\leq} \|x\|^2 + 2\|x\| \|y\| + \|y\|^2$$

$$= (\|x\| + \|y\|)^2. \quad \square$$

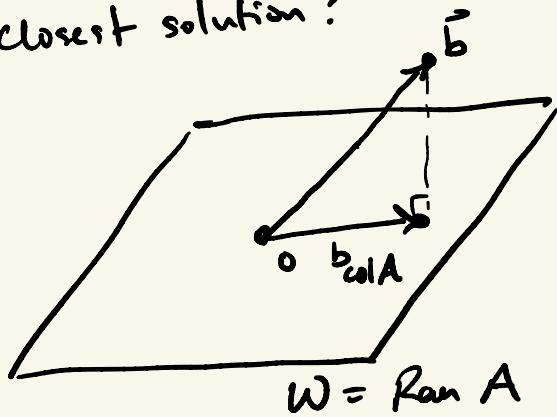
Least Squares

$A\vec{x} = \vec{b}$ inconsistent. Closest solution?

Want to minimize

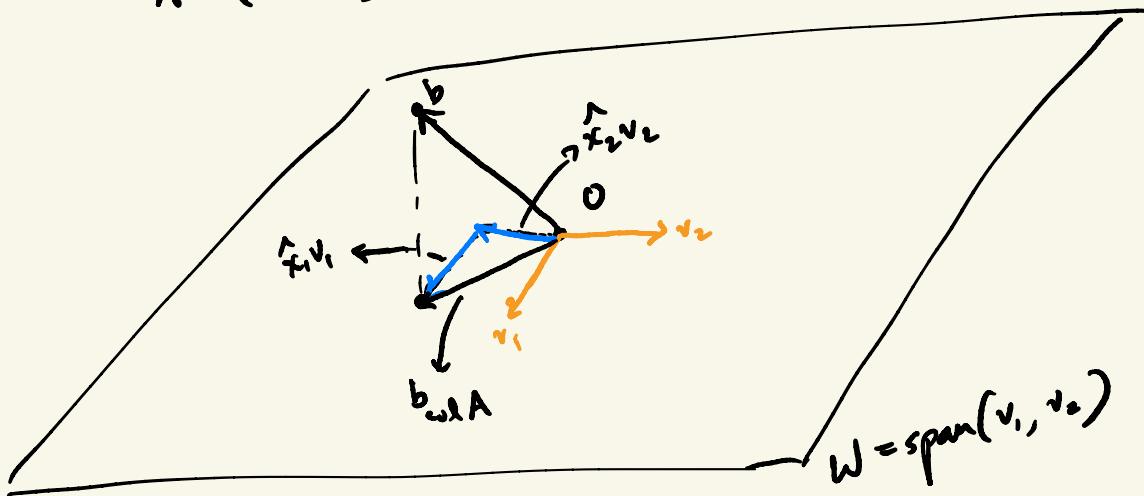
$$\|\vec{b} - A\vec{x}\|, \text{ i.e.}$$

Find $\hat{\vec{x}}$ s.t. $\|\vec{b} - A\hat{\vec{x}}\|$
is small as possible.



Orthogonal decomp does this!

$$A = (v_1 \ v_2) \quad \hat{\vec{x}} = \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}$$



Def: A least squares sol'n to $Ax = b$ is one that minimizes $\|b - Ax\|$

Thm: The least-squares solutions to $Ax = b$ are the solutions of

$$A^T A x = A^T b.$$

Pf: least squares sol'n comes from solving $A x = b_{\text{col } A}$. (i.e. setting $w = \text{col } A$, $b_{\text{col } A} = b_w$). If \hat{x} satisfies $A^T A \hat{x} = A^T b$, then $A \hat{x} = b_w$. \square

Ex: $Ax = b$, $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$.

This is inconsistent.

$$A^T A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 3 & 3 \end{pmatrix}$$

$$A^T b = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

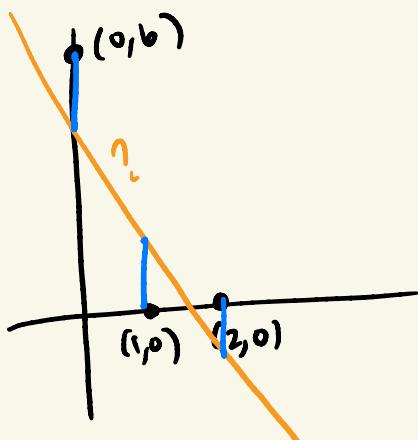
$$\begin{pmatrix} 5 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$

$$\hat{x} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$

$$\|b - Ax\| = \left\| \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -3 \\ 5 \\ 1 \end{pmatrix} \right\| = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{6}.$$

Closest Ax can get to b is within $\sqrt{6}$ units.

Ex:



$$y = Mx + B$$

$$b = M \cdot 0 + B$$

$$0 = M \cdot 1 + B$$

$$0 = M \cdot 2 + B$$

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix}, \quad x = \begin{pmatrix} M \\ B \end{pmatrix}$$

$$b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$$

We solved this! $\hat{x} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$.

$y = -3x + 5$ is the line minimizing sum of squared errors.

specifically, \hat{x} minimizes $\|b - Ax\|$

And $A\hat{x}$ is a vector of $-3x + 5$ evaluated at the pts 0, 1, 2. $(b, 0, 0)^T$ is the vector of y-values we wanted for $x = 0, 1, 2$ resp.

Remark: Gauss invented this method to find a best-fit ellipse for an asteroid trajectory.
(1801)

Orthogonal sets

Def. A set of nonzero vectors $\{u_1, \dots, u_m\}$ is orthogonal if $u_i^T u_j = 0$ when $i \neq j$. It is orthonormal if, additionally, $u_i^T u_i = 1$ for all i .

Ex. $\{e_1, \dots, e_n\} \subseteq \mathbb{R}^n$ is orthonormal.

Prop. An orthogonal set is lin. indp.

Pf. $c_1 u_1 + \dots + c_m u_m = 0$
take dot prod of both sides
w/ u_i gives
 $c_i \|u_i\|^2 = 0 \Rightarrow c_i = 0$. \square

Prop. Suppose $W \subseteq \mathbb{R}^n$ has an orthogonal basis u_1, \dots, u_m . Let $x \in \mathbb{R}^n$. Then

$$x_W = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{x \cdot u_m}{u_m \cdot u_m} u_m$$

$$\left(x - \left(\frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \dots + \frac{x \cdot u_m}{u_m \cdot u_m} u_m \right) \right) \cdot u_j$$

$$= x \cdot u_j - \frac{x \cdot u_j}{u_j \cdot u_j} u_j \cdot u_j = x \cdot u_j - x \cdot u_j = 0.$$

This holds for each j . So x^* is orthogonal to $\text{span}(u_1, \dots, u_m) = W$. So $x^* \in W^\perp$.

$$x = \sum \frac{x \cdot u_j}{\|u_j\|^2} u_j + x^*$$

$\underbrace{W}_{\text{this term must be } x_w} \quad \overbrace{W^\perp}$

If u_1, \dots, u_m , this simplifies to

$$x_w = \sum_{j=1}^m (x \cdot u_j) u_j$$

